
Formally Verifying the Security and Privacy of an Adopted Standard
for Software-Update in Cars: Verifying Uptane 2.0

Ioana Boureanu, University of Surrey, i.boureanu@surrey.ac.uk

Abstract— In this paper, we formally analyse the security of
Uptane 2.0 – the latest version1 of a framework for over-
the-air (online) delivery of software to cars. We are doing so
by using the threat model and security requirements found in
standard document that accompanies Uptane 2.0, as well as
a modulation of this threat model and requirements added by
ourselves, for a deeper analysis. To undertake this verification,
we use the well-known formal protocol-verifier and theorem
prover called Tamarin. We discuss our responsible disclosure
to and work with the Uptane Alliance.

I. INTRODUCTION

Uptane 2.0 is the latest version an open and secure
software update framework, which consists of a design
of over-the-air (OTA) delivery of software to automobile
electronic control units (ECUs). It is under standardisation
and it is integrated into Automotive Grade Linux, an open
source system currently used by many large OEMs, and has
also been adopted by a number of U.S. and international
manufacturers. Its website, https://uptane.github.
io/, states that: “the framework protects against malicious
actors who can compromise servers and networks used to
sign and deliver updates. Hence, it is designed to be resilient
even to the best efforts of nation state attackers.”

In this paper, we follow the standard document of
Uptane [1] and put this type of claims to the test. We do
focus on the requirements in the standard rather than those
on the website.

Fig. 1. OTA Software-Updates in Cars

Surrey Centre for Cyber Security (SCCS)
1“Latest” is meant at the time of this writing, i.e., in April 2023.

A. An Overview of Uptane

a) OTA Software-Updates in Cars: This operates in
the setting sketched in Figure 1. In Figure 1, we see that
the idea is that different components (i.e., ECU) inside the
car, such as the electronic brake control module, can get
their software updates from/via an online server managed by
the manufacturer of the car, e.g., Audi, with the software
provided by the different manufacturers of components, also
known as Original Equipment Manufacturers (or OEMs, for
short), e.g., SIEMENS.

b) Overview of Uptane’s Components: But in reality,
the ECUs inside the cars are organised in a hierarchy:
primary ECUs and tiers of secondary ECUs. Also, the server
functionality is often separated into different services: part-
cataloging the software and book-keeping which ECU in
which car may have which version, the time/synchronisation
part, etc. In this vein, the Uptane framework has the

Fig. 2. Uptane Components (figure adapted from [2])

components shown in Figure 2, and it describes each of them
and the protocols they need to follow such that a software
update gets from an OEM to an ECU.

c) Overview of Uptane’s Design Flow: Without yet
detailing the Uptane’s mechanisms, we preempt that the
Uptane end-to-end updates are based on cryptographic
primitives and protocols. Take use-case 3.2.2.2 of the
Uptane standard, for instance: say SIEMENS has
created a revised software image for an electronic brake
control module; it will digitally sign it together with
the relevant metadata, SignprivateKey Siemens(new −
sw − image||metadata), it will sent the new software
and the signature to the servers of, say, the VW
group who – upon verification– will sign more details,
SignprivateKey VW (. . . ||added metadata.||conflicts. . .),
upload the new software to the Image repository and
update the Directory Index (see Figure 2). The security
requirements of the channels between parties (i.e.,

https://uptane.github.io/
https://uptane.github.io/

authentication, integrity) are also of importance to the
security of these updates (and this is included in part in the
standard). On Figure 2, the channels envisaged are marked
via red stars. Finally, Uptane specifies how the car and its
relevant ECUs can obtain such an update.

B. Contributions

Our contributions are as follows:
– we devise a hierarchical threat model, including and
extending the one dictated by the Uptane 2.0 standard;
– we consider a series of security requirements for
Uptane-2.0, including those found in standard;
– in the Tamarin tool, we model the Uptane-2.0 system
and the aforesaid requirements in these threat models;
– we find a series of flaws and disclose them to the “owners”
of Uptane 2.0.

C. Structure

The structure of the paper is as follows. In Section II,
we give a summary of the Uptane system, its requirements
and threat model as per the the Uptane 2.0 standard. In
Section III, we present our incorporation and augmentation
of the Uptane-2.0 threat and requirements in our own re-
fined attacker model and set of security goals. In Section IV,
we show how we model this in the Tamarin tool, and the
security-verification results obtained. In the remainder, we
discuss related and future work, and conclude.

II. DISTILLING THE UPTANE 2.0 STANDARD

We now describe the parts, components, assumptions and
requirements which we extracted out of the Uptane 2.0
standard and are essential to the formal verification of its
security and privacy.

A. Uptane’s Components

These components, as described in Sections 5.1 and 5.2
of the standard, are:

• Uptane Server, which consists of the following.
(a) Time server – provides a secure way for ECUs to

know the time.
(b) Image repository – contains binary images to install

and signed metadata about those images. This is
the server that the primary ECU will download its
updates from.

(c) Director repository – is connected to an inventory
database containing information on vehicles, ECUs,
and software revisions. It instructs ECUs as to which
images will be installed in response to a primary ECU
uploading its vehicle version manifests.

• Vehicle, where the components of interest are as follows.
(i) Primary ECU (PECU) – capable of downloading

images and associated metadata from the Uptane
servers, verifying the signatures on all update meta-
data and downloading updates on behalf of its asso-
ciated Secondary ECUs.

(ii) Secondary ECU (SECU) – capable of performing
either full or partial verification of metadata. It also

sends signed information about its installed images
to its associated Primary ECU.

Requirements, described in Sections 5.1, 5.2 and 5.3 of
the standard, intrinsically linked to the components above,
and to functionality, security and privacy, are:

• Any ECU needs to be able to have a secure way of
verifying the current time.

• At deploy time, each ECU will also have a copy of
the Uptane metadata, e.g., the public keys of all the
Uptane roles relevant to the ECU as well as the current
time and their own ECU signing/MAC-ing key.

• While signing keys are required to be unique to an
ECU, the secret keys used to decrypt images need not
be unique.

The standard, Sections 5.1– 5.3, describes other enti-
ties/roles (e.g., root, snapshot, etc.), but –for our purposes
here– these can be abstracted away.

B. Uptane’s OTA Software-Updates

As per Section 5.4.2 of the standard, the primary ECU
will do the following during the update process:

a. Construct and send vehicle version manifest (Figure 3);
b. Download and check current time (Section 5.4.2.2 of

the standard);
c. Download and verify metadata (Section 5.4.2.3 of the

standard);
d. Download and verify images (Section 5.4.2.4 of the

standard);
e. SHOULD (not SHALL) send latest time to SECUs

(Section 5.4.2.5 of the standard);
f. Send metadata to SECUs (Section 5.4.2.6 of the stan-

dard);
g. Send images to SECUs (Section 5.4.2.7 of the standard).

Sending an Update Request: We now describe the
process of sending a request for a software update. In
Figure 3, we show the message flow which initiates the
update process. Each secondary ECU sends a signed hash

SECU1

Vehicle
SECU2

Vehicle
PECU
Vehicle

Directory Server
Uptane

Sign Image Rep(sign(hash(image),sKsecu1
)

Sign Image Rep(sign(hash(image),sKsecu2
)

ReqUpd(Manifest)

msc Request Update

Fig. 3. Requesting Updates in Uptane

of its image to the primary ECU which sends aggregates all
these signatures into a manifest and sends that to Uptane’s
Directory Server (see Section 5.4.2.1 of the standard for
details). SECUs can send their version reports at any time so
that they are already stored on the Primary when it wishes to
check for updates. Alternatively, the Primary can request a

version report from each Secondary at the time of the update
check.

A symmetric flow exists for updating an image by, e.g.,
a SECU, but in the opposite direction: i.e., the server sends
an answer to the SECU’s request in a manifest, proxied via
a PECU.

Also, there exists an identical protocol for asking the
correct time, i.e., the SECUs, PECUs, request not a software
update but re-sync their clocks with the server. This is done
in case with every software-image update

C. Uptane’s System and Security Assumptions

We gather the following defining system-engineering re-
quirements from all the aspects that the standard sets out.

– Req. 1: There are several servers running Uptane and
each can update the ECUs with different software.

– Req. 2: There are several secondary ECUs and not all
get updated at once, by the same server, via the primary
ECU as a proxy. Yet, according to Section 5.3.2.1, all ECUs
need to be present in the vehicle manifest sent as part of the
update request.

– Req. 3: The channel between the primary ECU and
secondary ECUs is not secure, even if this may be outdated
(nowadays, these channels have integrity protection).

– Req. 4: The channel between the primary ECU and the
Uptane server is secure.

– Req. 5: The channels between the components in the
Uptane server are secure.

– Req. 6: “If any step fails, the ECU shall return an error
code2 indicating the failure.” (see Section 5.4.4.2).

a) Uptane’s Adversaries Capabilities: According to
Section 4.2 of standard, an Uptane attacker can do any of
the following:

a. intercept and modify network traffic, inside and outside
cars;

b. compromise the Director repository or Image repository
server, but not both;

c. compromise either a primary ECU or a secondary ECU,
but not both in the same vehicle
b) Uptane’s Security Requirements: According to

Section 4.1 of standard, no attacker should be able to do
the below.
– deny installation of updates that is doing a denial of service
(DoS), which we hereby denote Gstd.

no-DoS;
– read the contents of updates to discover confidential
information, which we hereby denote Gstd.

conf .;
– inflict changes to alter certain functions or control ECUs,
which we hereby denote Gstd.

no-destroy.

III. SECURITY-MODELS FOR UPTANE

A. Our Threat Hierarchy

Based on the attackers stipulated by the standard and
summarised by us in Section II-C.0.a, we create a hierarchy
of increasingly stronger attackers, as follows:

2This formulation makes us ascertain that the explicit failure needs to be
indicated.

Attacker-Tier 1 (Att. 1): The attacker does not control
anything, but can listen onto the channels, i.e., normal Dolev-
Yao.

Attacker-Tier 2 (Att. 2): The attacker does not control
anything but can listen onto the channels + he can corrupt a
secondary ECU.

Attacker-Tier 3 (Att. 3): The attacker does not control
anything but can listen onto the channels + he can corrupt
the primary ECU.

Attacker-Tier 4 (Att. 4): The attacker does not control
anything but can listen onto the channels + he can corrupt
the primary ECU or a secondary ECU, but not both.

Attacker-Tier 5 (Att. 5): The attacker is capable of
compromising and controlling either a Director repository
or Image repository server.

B. Our Security & Privacy Goals

Based on the requirements stipulated by the standard and
summarised by us in Section II-C.0.b, we create our own
requirements which incorporate to the ones in the standard,
but also add to them as follows:

– no desynchronisation of parties (subsuming no denial-
of-service), e.g., if an Image Server thought it ran with a
PECU and vice-versa, they both finish their executions; we
denote this as Gformal

no-desync;
– secure agreement (subsuming confidentiality and authen-

tication), e.g., if an Image Server thinks a SECU is updated,
so does its PECU and so does itself, and vice-versa; we
denote this as Gformal

agree)
– time correctness, e.g, no attacker can delay an update

without some parties realising; we denote this as Gformal
time);

– unlinkability, e.g., no attacker can know if a given SECU
has updated or not; we denote this as Gformal

unlink)
We note that our security goals above, i.e., Gformal

...

include and extend the goals in the standard, i.e., Gstd
....

Concretely, we use the symbol “⊃” for this inclusion and
recount this explicitly below:

Gformal
no-desync ⊃ Gstd.

no-DoS

Gformal
agree ⊃ Gstd.

conf .

Gformal
agree ⊃ Gstd.

no−destroy.

Gformal
agree ⊃ Gformal

no-desync

This means that if any of our goals Gformal
... fail, the

included Gstd
... also fails but not vice-versa.

Also, note that if one writes “Gx”, from “x” – it is clear
if one means a formal goal, i.e., Gformal

x, or a goal in the
standard, i.e., Gstd

x. So, in reporting our verification results
(see Figure 6), we simply write Gx.

IV. DOLEV-YAO VERIFICATION OF UPTANE

a) Symbolic/Dolev-Yao Verification: Symbolic verifica-
tion, also known as Dolev-Yao verification [3], [4], [5] is a
formal method for security analysis. Therein, cryptography

is assumed to be perfect/correct [6], yet it allows for a
computationally unbounded Dolev-Yao (DY) attacker which
can hijack all protocol sessions and communication, and
corrupt all parties modulo the perfect-cryptography assump-
tion, and a set of abstract, algebraic rules that encapsulate
these powers [6]. This makes symbolic analysis amenable to
mechanisation into (often automatisable) protocol verifiers
such as the Tamarin prover [4].

Symbolic tools can analyse arbitrarily-many, concurrent
system executions, which computational analysis rarely at-
tains. This leads to symbolic verification having consistently
and successfully exhibited dangerous protocol-design errors
when interleaving unbounded numbers of protocol runs ex-
ecuting concurrently [7], [8], [9].

b) The Tamarin Prover: Tamarin models are tran-
sition system, whereby the states are modelled as multiset of
logical predicates/facts, over user-defined protocol variables.
The transition system’s rule emulates rewriting over these
facts; i.e., the semantics is a fragment of multiset rewriting
logic [4]. The properties to verify are expressed as lemmas
over these facts, in a fragment of first-order logic that allows
reasoning in all or in one trace/execution of the transition
system.

Due to its support for unbounded verification, Tamarin
proofs are not guaranteed to terminate or can take a long
time to complete. Consequently, Tamarin supports various
heuristics to cover the search space yielded by the constraint-
solving problems underlying the analysis. These heuristics
determine which rules should be prioritised during the proof
search. Users can also create a bespoke search heuristic or
“oracle” [4] to pass to Tamarin in cases where Tamarin’s
default heuristics fail. When Tamarin terminates, if an attask
it will produce a trace which could help in the discovery of
exploits within a protocol.

Tamarin has been extensively and successfully used in the
security verification of large systems such a TLS 1.3, 5G-
AKA, including when they were under standardisation. For
more details see http://tamarin-prover.github.
io/.

A. Modelling

We modelled the Uptane in all 5 tiers of attacker above
and with all the security goals above in Tamarin.

We now give a flavour of modelling in Tamarin, which
we did in version 1.6.0 of the tool. To this end, Figure 4
shows how a rule in Tamarin is modelled and our anno-
tations show how these rules are used to encode systems
behaviour.

And, Figure 5 shows how a lemma in Tamarin is
modelled. This intuitively shows that we included, in our
model, predicates/facts that track when SECUs and PECUs
are linked as part of our vehicle, and then we use these in a
lemma to check the correctness/executability of our model,
even in the presence of an attacker. That is, by using the
“t01”, “t02” labels shown in the figure, we check that if a
given SECU were to be linked twice to a PECU, then –in
fact– the two times are one and the same: i.e., in our model,

// a Tamarin rule expressing that the PECU has aggregated all the reports and now it
sends the manifest to the DS

rule PECU_reports_gathered:
let
payload=<$UV, $PE, vehicle_manifest>
hash_payload=HASH(payload)
sig_payload=sign(hash_payload,~ltk)
full_vehicle_manifest=<HASH(payload), payload, sig_payload>
in
[

PE_State_02($PE, $UV, $DS, $IS, $TS, ~ltk, image_pe, vehicle_manifest,
vehicle_manifest_size, created)
]
--[

PECU_Sends_Manifest($PE, $DS, full_vehicle_manifest)
, Eq(vehicle_manifest_size,'1'+'1'+'1')
]->
[
Out_S($PE, $DS, full_vehicle_manifest)
]

Input to a Tamarin rule

Processing of the rules’ inputs

Action facts that allow us to
reason about the behaviour of
the system

Tamarin represents protocols using rules which have
inputs and outputs, creating a transition system (TS).

The TS is subjected to a Dolev-Yao semantics by the tool

Output of a rule

Fig. 4. Example of some Uptane’s Logic encoded as a Tamarin Rule

SECUs can indeed be linked to a PECU only once, when
the system of ECUs of a car is composed (which is captured
in our Tamarin models).

//to show that any SECU is only linked to one PECU
lemma secu_is_linked_to_one_pecu_only:
"
All SECU1 SECU2 SECU3 PECU1 PECU2 UV1 UV2 #t01 #t02
.
LinkedECUs(UV1, PECU1, SECU1, SECU2) @ t01
&
LinkedECUs(UV2, PECU2, SECU1, SECU3) @ t02
==>
(#t01 = #t02)
"

Fig. 5. Example of Uptane’s Verification in a Tamarin Lemma

We modelled more properties and requirements than afore-
mentioned, but – for sake of clarity– we do not explain this
here.

Our models are modular, e.g., the security of the channels
can be “up”-ed or “down”-ed in the same model, creation
and updates of manifest can be interchanged, etc.

However, for the review process to be eased, we artificially
created 5 separate Tamarin files corresponding to different
options (e.g., attacker, channel types). Also, we created
Tamarin oracles for the more complex models (e.g., strong
attackers), as the proofs were intractable without oracles.
Even automated with oracles, these proofs take 20+h to run
on powerful servers (see next sub-section).

• All our files and replicability instructions can be
found at http://people.itcarlson.com/ioana/
files/uptane.

B. Results on the Security-Verification for Uptane

We summarise the results found via all our Tamarin
models, lemmas and proofs, in our Figure 6. This summary is
leveraging our hierarchy of attackers and properties to show
only the strongest failures, meaning that properties weaker
than the ones shown to fail also fail themselves.

On Figure 6, a “sad face” denotes an attack, whereas no
face or no distinctive mark illustrates that no attack found.

http://tamarin-prover.github.io/
http://tamarin-prover.github.io/
http://people.itcarlson.com/ioana/files/uptane
http://people.itcarlson.com/ioana/files/uptane

The mention in brackets, under the “sad face”, gives an
explanation of why the lemma failed in Tamarin, based on
the counterexample trace given by Tamarin, but expressed
in human-readable language. Note that all these explanations
for the attacks found are, in fact, in line with the assumptions
by the Uptane 2.0 standard.

Finally, recall that if a property fails under Tier x of
attackers, it also fails on all Tier y of attackers, for y > x.
I.e., all that fails on a row, also fails on row underneath it.
In this spirit, Tier 4 (which combines Tier 2 and Tier 3) is
not recounted, since the attacks found at it are already found
at Tier 2, and we found no others.

Let us detail on some properties now. Row 1 says
that a simple, Dolev-Yao attack can: desynchronise SE-
CUs/PECUs/server, can “link”/tell which SECU has been
updated and which not, can desynchronise parties w.r.t. time.
Row 2 and 3 say that if the attacker can corrupt PECU, or
even SECUs, there is no hope of security amongst the whole
network of them, as they become non-authenticated to one
another; this is largely due to the fact that PECU and SECUs
share encryption keys, as per the Uptane 2.0 standard.
The last row says that if the server is corrupt, then there is
no hope of security, irrespective of the above assumption on
PECU and SECUs sharing encryption keys.

Fig. 6. Uptane’s Security and Privacy as Verified in Tamarin

The thing to underline here is not that we found the above
per se, but that we found it using formal-method tools, with
systematic modelling which can be re-used and augmented
for continuous verification of the standard.

a) Verification Statistics: Our models have on aver-
age cca. 5000 lines of code each. They are written in
in Tamarin version 1.6.0. We executed the models on
a server with 2 Intel Xeon E5-2667 CPUs (16 cores,
32 threads) and 378GB of RAM. The timings of execu-
tions of proofs of lemmas on models vary from seconds,
to 20+h, to non-terminating. These details can be found
on our repository: http://people.itcarlson.com/
ioana/files/uptane

C. Disclosure &Recommendations
We disclosed this to the Uptane Alliance.

Given the findings above, we recommended the following
to the Uptane Alliance:

• Channels between ECUs should be encrypted and au-
thenticated;

• ECUs should not share encryption keys;
• Error handling should be better specified and error codes

should be hidden.
We are working with the Uptane Alliance to make

amends to the standard.

V. DISCUSSIONS

In future work, we would like to:
• take this methodology used on Uptane 2.0 and apply

it to Uptane 2.1 which is to be released in June 2023
(i.e., after the time of this writing);

• test an implementation of Uptane, using – of course–
different methodology, suited to program (not systems)
analysis;

• lift our model as well as work with the Uptane
Alliance to lift the standard itself to support hierarchies
of SECUs and refined control; this means to model cars
more faithfully, where SECUs are partitioned in levels,
SECUs of level 1, SECUs of level 2, etc., depending
on their criticality. Also channels (buses) in between
the SECUs themselves and the SECUs and the PECU
are more or less secure (e.g., with/without integrity
protection) based on these levels. Then, we would like
to check security in this hierarchical context: i.e., if an
attacker corrupts a SECU of level 2, can it compromise
the whole system?

• use the above to build a risk model for safety and secu-
rity, in the way that UNECE WP.29 regulation (https:
//unece.org/wp29-introduction) demands.

VI. RELATED WORK

Possibly the “reference paper” on Uptane is [10] which
describes it even before the standard documents were as
they are today. A simplistic security analysis using the old-
fashioned CSP formalism can be found at [2]; no vulnerabil-
ities of interest are reported. Non-academic security reviews
have been carried out by the Uptane Alliance [11], and
there is one line [12] on supply-chain attacks.

No prior work has done an as-systematic or as-formal
analysis as we undertake here.

VII. CONCLUSIONS

In this paper, we showed the formal security analysis
of Uptane 2.0 – the latest framework for over-the-air
(OTA) (online) delivery of software to cars. We did so
by using the threat model and security requirements found
in standard document that accompanies Uptane 2.0, as
well as a modulation of this threat model and requirements
added by ourselves, for a deeper analysis. To undertake this
verification, we used the well-known formal protocol-verifier
and theorem prover called Tamarin. We found certain
shortcomings and we made recommendations to the Uptane
Alliance, and are working with them on edits to the standard.

http://people.itcarlson.com/ioana/files/uptane
http://people.itcarlson.com/ioana/files/uptane
https://unece.org/wp29-introduction
https://unece.org/wp29-introduction

ACKNOWLEDGEMENTS

We thank Thales for making us aware of Uptane as part
of a joint research project called AutoPaSS, funded by the
EPSRC as grant EP/S024565/1. We thank Fortunat Rajaona
and Steve Wesemeyer for initial discussions and modelling
of Uptane, respectively.

REFERENCES

[1] Uptane Standards Group, “Uptane standard for design and
implementation 2.0.0,” Uptane, accessed: 2022-06-24. [Online].
Available: https://uptane.github.io/papers/uptane-standard.2.0.0.html

[2] R. Kirk, H. N. Nguyen, J. Bryans, S. Shaikh, D. Evans, and D. Price,
“Formalising uptane in csp for security testing,” in 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security
Companion (QRS-C). IEEE, 2021, pp. 816–824.

[3] A. Armando, D. Basin, Y. Boichut, and et al., “The AVISPA Tool
for the Automated Validation of Internet Security Protocols and
Applications,” in CAV, 2005.

[4] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover
for the symbolic analysis of security protocols,” in CAV, 2013, pp.
696–701.

[5] B. Blanchet, “An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules,” in IEEE CSFW, 2001.

[6] D. Dolev and A. Yao, “On the Security of Public-Key Protocols,”
IEEE Transactionson Information Theory 29, vol. 29, no. 2, 1983.

[7] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and
V. Stettler, “A Formal Analysis of 5G Authentication,” in CCS, 2018,
p. 1383–1396.

[8] I. Filimonov, R. Horne, S. Mauw, and Z. Smith, “Breaking unlinka-
bility of the icao 9303 standard for e-passports using bisimilarity,” in
ESORICS, K. Sako, S. Schneider, and P. Y. A. Ryan, Eds., 2019, pp.
577–594.

[9] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated
analysis and verification of TLS 1.3: 0-RTT, resumption and delayed
authentication,” in SP, 2016.

[10] T. Karthik, A. Brown, S. Awwad, D. McCoy, R. Bielawski, C. Mott,
S. Lauzon, A. Weimerskirch, and J. Cappos, “Uptane: Securing
software updates for automobiles,” in International Conference on
Embedded Security in Car, 2016, pp. 1–11.

[11] Uptane Standards Group, “Uptane: Securing delivery of software up-
dates for ground vehicles,” accessed: 2022-06-24. [Online]. Available:
https://uptane.github.io/papers/uptane first whitepaper 7821.pdf

[12] M. Moore, A. S. A. Yelgundhalli, T. K. Kuppusamy, S. Torres-Arias,
L. A. DeLong, and J. Cappos, “Scudo: A proposal for resolving
software supply chain insecurities in vehicles,” accessed: 2022-06-24.
[Online]. Available: https://uptane.github.io/papers/scudo-whitepaper.
pdf

https://uptane.github.io/papers/uptane-standard.2.0.0.html
https://uptane.github.io/papers/uptane_first_whitepaper_7821.pdf
https://uptane.github.io/papers/scudo-whitepaper.pdf
https://uptane.github.io/papers/scudo-whitepaper.pdf

	Introduction
	An Overview of Uptane
	Contributions
	Structure

	Distilling the Uptane 2.0 Standard
	Uptane's Components
	Uptane's OTA Software-Updates
	Uptane's System and Security Assumptions

	Security-Models for Uptane
	Our Threat Hierarchy
	Our Security & Privacy Goals

	Dolev-Yao Verification of Uptane
	Modelling
	Results on the Security-Verification for Uptane
	Disclosure &Recommendations

	Discussions
	Related Work
	Conclusions
	References

