
Epistemic Model Checking for Privacy
Fortunat Rajaona

Surrey Centre for Cyber Security
Univeristy of Surrey

United Kingdom
s.rajaona@surrey.ac.uk

Ioana Boureanu
Surrey Centre for Cyber Security

University of Surrey
United Kingdom

i.boureanu@surrey.ac.uk

R. Ramanujam
IMS Chennai

India
jam@imsc.res.in

Steve Wesemeyer
Surrey Centre for Cyber Security

University of Surrey
United Kingdom

s.wesemeyer@surrey.ac.uk

Abstract—We define an epistemic logic or logic of knowledge,
PL, and a formalism to undertake privacy-centric reasoning
in security protocols, over a Dolev-Yao model. We are able
to automatically verify all the privacy requirements that are
commonplace in security-protocol verification (i.e., strong secrecy,
anonymity, various types of unlinkablity including weak unlinka-
bility), as well as privacy notions that are less studied (i.e., privacy
regarding lists’ membership). Our methodology does not vary
with the property: it is uniform no matter the kind of privacy
requirement specified and/or verified. We operate in the setting
of a bounded number of protocol-sessions. We also implement
Phoebe — a proof-of-concept model checker for this methodology.
We use Phoebe to check all the aforementioned properties,
and we also show-case it on the “benchmark” anonymity and
unlinkability requirements of several well-known protocols.

I. INTRODUCTION

“Privacy” is often used as an umbrella term for numerous
and –sometimes– quite different concepts, such as anonymity,
non-traceability, unlinkability, pseudonymity [1]. In security-
protocol verification, there is a more specific set of privacy
concepts that are traditionally explored, as these particular
concepts link more strongly to cryptographic inferences: e.g.,
strong secrecy, anonymity, weak and strong unlinkability (see,
e.g., [2], [3], [4], [5], [6], [7]). Meanwhile, in formal-methods
lines which are primarily rooted in multi-agent systems and
logic-based game theory (e.g., [8], [9], [10]), more varied and
more nuanced notions of privacy are also considered, such as
undetectability, un-observability, and involvement. These latter
notions are also understood from a more generic, “plausibilistic”
viewpoint: that is, therein, privacy attacks stem from inferences
primarily based on a low level of entropy or uncertainty
in a system (e.g., due to all possibilities in a system being
exhaustively searchable), rather than from deductions centred
on a cryptographic/Dolev-Yao attacker. Perhaps unsurprisingly,
all these works [8], [9], [10], and others alike [11], [12], [13],
formalise such privacy via epistemic logics, also known as
logics of knowledge [14], [15], and an intrinsic formalism
for capturing uncertainty. Inspired by the this, we also take
such an approach to formalising privacy, only that we enhance
its semantics with cryptographic mechanisms. In essence, we
obtain the “epistemic privacy” seminally introduced by Halpern
and ONeill [11] in the context of multi-agent systems, and much
argued-for by Blaauw [10], but augmented with Dolev-Yao [16]
dimensions. In turn, we achieve an encoding of security-

protocols’ privacy such strong secrecy, anonymity, weak and
strong unlinkability, via epistemic logic, in a systematic way.

We bring together epistemic logic with our carefully crafted
Dolev-Yao-based semantics for the treatment of privacy-
reasoning in protocols in such a way as to be able to express and
verify all privacy properties uniformly: that is, our technique
operates in the same way irrespective of the type/flavour of
privacy verified. This is a small bonus since, in the area of
security-protocol verification, sometimes there are different
methods to verify, e.g., unlinkabilityvs. anonymity [2] ; the
latter is often captured via an equivalence between two traces,
whereas the former would naturally require checking a set of
traces against another set of traces, which leads to it often
being analysed via more mechanisable approximations by [6],
[7]. That said, we are not solving this, but rather we are
providing an alternative methodology that by-passes this issue
entirely. Concretely, epistemic logic has a “possible-worlds”
semantics [17], meaning that one can compare a system-state
with another possible system-state, considering the whole state-
space of the system at once, and without reasoning over
(particular) system-executions’ traces.

On a different note, our logic-based foundation also allows
us to handle the intruder and the honest parties in the same
manner. This is useful in various settings, as [11] discusses:
e.g., in protocols such as mix-nets [18], where an honest party
need not know who an intermediary “relay point” is.

Our formalism work can also be viewed as an extension of
in-principle, epistemic approaches [19], [20], [21], [22], where
a multi-agent systems semantics was underpinned by a Dolev-
Yao intruder model but only for the verification of security
properties (e.g., authentication and secrecy). Our model lifts
these ideas to reasoning about privacy properties.

All in all, we are the first to provide a mechanised tool for
a systematic analysis of security protocols’ against Dolev-Yao-
based and epistemically-expressed privacy.

We make the following key contributions.
1. We introduce a logic of knowledge, called “privacy logic”

(PL), concerned with what the intruder or other agents know
(in the well-founded, epistemic sense), at a state in a protocol’s
execution.

2. We give a privacy-centred semantics for our PL logic
and for security-protocols’ executions. This includes a new
cryptographic indistinguishability between protocol/system

states, defined on top of a privacy-driven enrichment of Dolev-
Yao [16] deductions.

3. We encode various flavours of privacy requirements in
our PL logic, including the well-understood notions of Dolev-
Yao-induced anonymity and unlinkability. We also include a
comprehensive comparison of our privacy expressions with
those of other privacy-analysis works.

4. We present Phoebe – a proof-of-concept model checker
for our logic against our semantics. We exemplify its use
by automatically analysing various privacy requirements,
including unlinkability, in several protocols which are the
“benchmark” for such analyses, i.e., the Private Authentication
Protocol [23], and the RFID protocols in [3], [6], as well as
the LoRaWAN Join v.1.1 protocol [24]. We also include a
comparison between Phoebe and other related tools such
as DEEPSEC [25], Sat-Eq [26], both in terms of abilities to
handle privacy analyses as well as performance.

II. A RUNNING EXAMPLE

We start by introducing our running-example, the second
Private Authentication Protocol by Abadi [23], which we denote
by PrivAuth:

Example 1 (PrivAuth: Private Authentication Protocol [23])

1. A→ B : “hello”, {“hello” , pubk(A), NA}pubk(B) (if α)

2. C → A : “ack”, {“ack”, pubk(C), NA, NC}pubk(A) (if β)

2′.C → A : “ack”, {N}K (if ¬β)

where {·}pubk(Y) denotes encryption with the public key of Y ,
condition α requires pubk(B) be in a whitelist SA held by A,
condition β that entity C in step 2 be the same as B in step 1
and pubk(A) be in a whitelist SC held by C.

In PrivAuth, each participant X has a whitelist SX , which is
a set of public-keys of parties that X intends to communicate
with. In step 1, a participant A acts as the initiator: A broadcasts
a “hello” message intended for a recipient B who satisfies
condition α, that is this B is in A’s whitelist SA. The “hello”
message is received by various participants C. A given C
acts as the responder: C tries to decrypt the second part of
the “hello” message, which will decrypt just for A’s intended
recipient: i.e., when C is B. In this case, the protocol proceeds
to step 2: C checks if the public-key pubk(A) found inside
the received message is in C’s whitelist SC . If so, then β is
fulfilled and C broadcasts a real acknowledgement message:
“ack” , {“ack”, pubk(C), NA, NC}pubk(A). If pubk(A) is not
in SC , then β is not fulfilled and C broadcasts instead a decoy
acknowledgement message: a nonce N encrypted with a random
key K. If C cannot decrypt the “hello” message (i.e., C 6= B
and so β is also not fulfilled), then the protocol proceeds to step
2′. In this case, C sends the decoy acknowledgement message
as per the above. All messages are broadcast over a network
of protocol participants. Decoy acknowledgement messages
are constructed such that they are indistinguishable from real
acknowledgements to any observers or protocol participants.

Abadi [23] considers the following privacy goals:

PrivAuth’s second goal is anonymity: “A should not have
to indicate its identity or presence to any principal outside
SA”.

PrivAuth’s third goal is third-parties’ privacy w.r.t. the
whitelists: a responder C should not leak anything about third-
parties found in SC : even when a participant A can deduce
that itself is in SC (given C’s reply in step 2), this A should
not know whether a third-party E is in SC or not.

Note 1: PrivAuth’s third goal carries a cryptographic nature
due to the protocol it refers to, yet it is also plausibilistic, in
its formulation; this is due to the usage of the words “should
not leak anything”, and an example of this could be the size of
the whitelists – which is not a concern tacked in cryptographic
privacy. Also, PrivAuth’s third goal does not refer to an intruder,
but to honest participants not inferring certain data. Thus, we
chose this running example as it eases the illustration of our
introductory aims to tackle both cryptographic and plausibilistic
privacy, as well as to look at intruder-centric as well as honest
violation of privacy. In this vein, as far as we know, PrivAuth’s
third goal was also not studied before either.

III. PRIVACY-CENTRED PROTOCOL MODEL

Our protocol model. assumes a Dolev-Yao (DY) adver-
sary [16], yet the agents and the DY adversary are systemati-
cally enhanced with privacy-centric deductions. To allow for
this, our cryptographic deductions operate not only over sets
of messages [27] (as is the case in classical Dolev-Yao-based
models [28], [29], [30]), but also over hash-tables of algebraic
abstract terms and concrete messages.

A. Protocol Algebra

The protocol description in our formalism follows the same
style as in epistemic-based model [28], strand space model [30],
and multiset rewriting model [29].

We refer to the free variables that appear in a protocol de-
scription as protocol variables, and the cryptographic operations
appearing are modelled as functional symbols.

Protocol Signature: We use a finite set V of protocol
variables partitioned into:

• a set A of participant variables or variables of sort
participant, e.g., A,B,C, . . .,

• a set K of key variables or variables of sort key, partitioned
into two subsets: Ks – denoting short-term keys, and Kl
– denoting long-term keys;
• a set N of nonces variables or variables of sort nonce,

e.g., M,N, . . .

For some protocols, we distinguish a set S of variables of sort
participant called whitelist. In our running-example PrivAuth,
a whitelist SA encapsulates the list of participant variables
showing to whom A is willing to speak.

As per the usual, functional symbols model cryptographic
operations. We consider a set F0 of constants/0-ary functional
symbols. Then, we define our set F of functional symbols,

partitioned into constructor symbols Fc and destructor symbols
Fd, i.e., F = Fc] Fd:

Fc = F0 ∪ {{| · |}·, {·}·, seck(·), pubk(·), hash(·), 〈·, ·〉}
Fd = {sdec(·, ·), adec(·, ·), check(·, ·), proj1(·), proj2(·)},

where hash denotes a hash function, {|·|} and sdec – symmetric
encryption/decryption, {·} and adec – asymmetric encryp-
tion/decryption, 〈·, ·〉 — pairing, proj1/proj2 – projections on
the first and second element of a pair, pubk and seck capture
public/private keys, and pairing and projections naturally extend
to tuples. F∗c denotes the set Fc \{seck} of functional symbols
that are public to all, i.e., any party can apply on the messages
it has.

Altogether, our protocol signature is the tuple (V,F) of the
set V of (sorted) protocol variables, and the set F of functional
symbols as per the above.

Abstract Terms: Abstract terms are the set T (F ,V) of
objects obtained by applying inductively functional symbols
in F to protocol variables in V: e.g., pubk(A) is an abstract
term representing A’s public key in a protocol description.

Abstract terms have types defined by application of functional
symbols to sorts: e.g., the type pair, the type encryption of
a pair, etc. We do not formalise this, as it follows naturally
from the constructive definition of terms.

Abstract terms capture messages as per the protocol de-
scription. In contrast, concrete terms represent concrete-value
messages in actual executions. So, concrete terms are formed
just like abstract terms, but with actual values instead of
variables: e.g., pubk(alice) vs. pubk(A).

Concrete Terms: In line with the sorts of variables, we
consider D = DN ∪ DA ∪ DK to be a domain for atomic values,
such that:
• DA contains values for variables of sort participant also

called participant’ names or , e.g., alice, bob, . . .;
• DK contains values for variables of sort keys also called

concrete keys or, denoted k, k1, k2, . . .;
• DN contains values for variables of sort nonce also called

concrete nonces, denoted by n, n1, n2,
Concrete terms are the set T (F , D) of objects obtained by
applying inductively symbols in F to atoms D.

The types of abstract terms extend to concrete terms, just
as sorts extend from variables to values.

For an abstract/concrete term, we write Subterms(t) for
the set of terms constructed out of variables and constructor
symbols inductively, up to t and including t.

1) Equational Theory: Our equational theory =E is the
smallest congruence on T (F ,V) or on T (F ,D) containing
the following set E of equations:

proj1(〈τ, τ ′〉) =E τ proj2(〈τ, τ ′〉) =E τ
′

adec({τ}pubk(p), seck(p)) =E τ sdec({|τ |}w, w) =E τ

check({τ}seck(p), pubk(p)) =E τ.

where p is either a variable or a value of sort participant, and
w is either a variable or a value of sort key.

B. Protocol Actions and Roles
1) “Simple” Actions: Actions constitute the base of a

protocol description. Our simple protocol actions are partitioned
into send actions and receive actions, and are syntactically
defined as follows.

Definition 1 (Syntax for Simple Sent and Receive Actions.)
The constructs below

i.A ! : (test(Φ)) (Vτ) τ (send)
i.A ? : (testpre(Ψ), testpost(Ψ

′)) τ, (receive)

represent a simple sent and simple receive action respectively,
where:
– i ∈ N denotes the protocol step at which the action is
performed in the protocol description;
– τ ∈T (F ,V) denotes the sent/received message;
– A ∈ A is a participant variable, denoting the entity in the
protocol description sending/receiving the message;
– Vτ ⊂ Subterms(τ) ∩ {Ks ∪ N} is the set of nonces and
short-term keys within τ newly generated at this step;
– Φ,Ψ,Ψ′ are logical formulae expressed over logical variables
overloading the protocol variables;
– test(Φ), testpre(Ψ) are checks for the satisfaction of the Φ
and Ψ formulae respectively, encoding the enabling conditions
of our actions; testpost(Ψ′) is a check for the satisfaction of
the Ψ′ formula, encoding the update resulting from the action;
– test(Φ), testpre(Ψ), testpost(Ψ′) are optional: i.e, there are
actions where Φ, or Ψ and/or Ψ′ are the constant truth.

“Pre”/“Post” Conditions on Simple Actions. testpost(Ψ′)
denotes the following type of condition: a receipt of a message
takes places at state of our transition-system semantics, and that
state is updated a first time, and then the check encapsulated
in testpost(Ψ′) is performed on this updated state, to trigger a
final update (or not). We use such a testpost(·) in Example 8.
Differently, testpre(·) encodes a test on an incoming message
against the state before its receipt, updating the state if the
test succeeds. Finally, we use test(·) on sending actions, e.g.,
to encode checks as to whether an interlocutor belong to a
whitelist (see Example 2).

2) Branching Actions: The tests test(Φ), testpre(Ψ),
testpost(Ψ

′) inside simple actions do not encode “if-then-else”,
but rather pre/post conditions on actions’ executions. However,
there are privacy-relevant protocols where actions follow an
‘if-then-else’ construct semantics. To encapsulate this, we next
introduce the notion of branching actions; these have the same
components as a simple action, except that they present two
alternatives at a single step.

Definition 2 (Syntax for Branching Sent and Receive Actions.)
A branching send action is syntactically defined by:

i.A ! : test(Φ) (Vτ0) τ0
|A ! : test(¬Φ)(Vτ1) τ1

A branching receive action is syntactically defined by:

i.A ? : (optional simple-receive tests) τ0
|A ? : (optional simple-receive tests) τ1,

where the denotations of i, A, ! , ? , (Vτi), τi, formulae of
the type Φ is as per Definition 1, and test(·) in not optional.

Definition 2 denotes that if test(Φ) holds then τ0 is sent,
otherwise τ1 is sent. Depending on the branch taken in a
branching send action, either τ0 or τ1 will be received in the
corresponding branching receive action (see Example 2).

3) Protocol Roles & Protocols: The abstract representation
of a participant A’s messages and actions is called the role
of A, denoted by ηA. We refer to protocol variables which
are not fresh nonces or short-term keys but originate from ηA
as role parameters and denote this param(ηA). As usual, a
protocol is formalised via a set of roles. We exemplify this on
our running example.

Example 2 (Protocol Specification for PrivAuth.) PrivAuth
has two roles: the role ηA of A (initiator) and the role ηC of
C (responder). The role ηA is given by

1.A ! : test(B ∈ SA)({NA}){〈pubk(A), NA〉}pubk(B)

2.A ? : {〈NA, NC , pubk(B)〉}pubk(A)

|A ? : {N}K

The role ηC of C is given by:

1.C ? : {〈pubk(A), NA〉}pubk(B)

2.C ! : test(β) ({NC}) {〈NA, NC , pubk(B)〉}pubk(A)

|C ! : test(¬β)({N,K}){N}K ,

where:
– the set of protocol variables used is V = A ∪ N ∪ K with
A = {A,B,C}, N = {N,NA, NC}, K = {K};
– the set of whitelist variables is S = {SA, SC};
– A,B, SA are in param(ηA), and C, SC are in param(ηC);
– the functional symbols used are given by F = (Fc,Fd);
– β is the formula hasC(seck(B))∧A ∈ SC , which formalises
that C is the intended recipient and willing to speak to A; the
meaning of β will be clarified in Section IV. Constants “hello”
and “ack” were omitted in this presentation.

C. Substitutions
Substitutions map protocol variables to concrete terms, to

simulate a (potentially adversarial) protocol execution with
concurrent instances of role parameters.

Definition 3 (Substitutions.) A substitution σ : V → T (F , D)
is a total mapping of the protocol variables to concrete terms.

Substitutions are homomorphically lifted from variables to
terms, as expected. We consider substitutions which are
• well-sorted – map abstract terms to concrete terms of the

same sort (nonce variables in N to nonces in DN , key
variables in K to concrete keys in DK etc.)

• suitable for participant variables – if A and B are different
participant variables attached to a role, then σ(A) 6= σ(B).

In the initialisation phase of our model, for each protocol
role A, we apply substitutions to the A−role parameters
param(ηA), i.e., parts of the role remain uninstantiated.
Example 3 below instantiates the role parameters in PrivAuth.

Example 3 (Substitutions for PrivAuth.) Consider the protocol
PrivAuth. Assume three values alice, bob, and charlie in DA,
and three substitutions σ1, σ2, σ3 defined by:

σ1 σ2 σ3

A 7→ alice A 7→ alice A 7→ alice
B 7→ bob B 7→ bob B 7→ bob
C 7→ bob C 7→ bob C 7→ charlie
SA 7→ {pubk(bob)} SA 7→ {pubk(bob)} SA 7→ {pubk(bob)}
SC 7→ {pubk(alice)}SC 7→ {pubk(charlie)}SC 7→ {pubk(bob)}

In the above, alice is the initiator and bob the intended
receiver. The substitution σ1 simulates an execution with bob
as responder, and willing to reply to alice , σ2 – a session with
bob as responder, but not willing to reply, and σ3 – a session
with charlie as responder.

In our practical protocol-verification (Section VI), we con-
sider a bounded number of substitutions. Variables that are
not mapped via these substitutions in the initial setup of the
system are generated by considering all possible values1 for
data, including allowing fresh values for the intruder.

We use the notion of protocol session as per the usual: it
encapsulates any execution of the protocol resulting from the
application of several substitutions to the protocol roles.

D. Our Protocol Model: Privacy Systems (PS)

We now define a Privacy System (PS): our multi-agent
transition-system for a security-protocol semantics with a
Dolev-Yao model enhanced for privacy-centric reasoning.

First, assume an arbitrarily fixed tuple (Pr,Σ, nsess): Pr
is a protocol defined over our signature (V,F); Σ is a finite
set of substitutions; nsess is a natural number denoting the
bound on the number of sessions. From (Pr,Σ, nsess), the
Privacy System (PS) IPr,Σ,nsess is constructed, step by step,
from the following objects: agents, system states, state updates,
and agents’ indistinguishability relations on states.

1) Agents of a PS: Intuitively, an honest agent represents
an instantiation of a protocol role, attached to a session and to
a class of substitutions that agree on the role parameters. The
intruder I is a special agent, not attached to any particular
role or session.

Definition 4 (Agents of a PS.) Let (Pr,Σ, nsess) be a tuple
a protocol Pr, a set Σ of substitutions, and a number nsess
of sessions. Then, Ag = I ∪ {ag1, . . . , agω} are the agents of
the PS IPr,Σ,nsess , where:
• each honest agent agj is a tuple (σ(param(ηA)), i), where
ηA is a role in Pr, σ is a substitution in Σ, i ≤ nsess is
a session number, and j ∈ {1, . . . , ω};

• I is the intruder agent.

The number ω of honest agents is a function of |Σ|, nsess ,
and the sizes of the role parameters param(ηA).

Each honest agent agj = (σ(param(ηA)), i) corresponds to
a protocol session run by a concrete participant, playing the
A-role. The name of agent agj = (σ(param(ηA)), i) is the

1This is finite, as we use a bounded number of well-sorted substitutions.

participant name that substituted A in session i, denoted by
name(agj) = σ(A).

A participant name alice playing several roles will corre-
spond to different agents agj , agk, . . . with the same agent’s
name alice, as illustrated by the following example.

Example 4 (Agents for PrivAuth.) Consider the roles ηA and
ηC of PrivAuth and let nsess = 2. From the three substitutions
σ1, σ2, σ3 in Example 3, we obtain eight agents:

ag1 = σ1(ηparA , 1) = σ2(ηparA , 1) = σ3(ηparA , 1)

ag2 = σ1(ηparA , 2) = σ2(ηparA , 2) = σ3(ηparA , 2)

ag3 = σ1(ηparC , 1) ag4 = σ2(ηparC , 1) ag5 = σ3(ηparC , 1)

ag6 = σ1(ηparC , 2) ag7 = σ2(ηparC , 2) ag8 = σ3(ηparC , 2)

where ηparA is a short-hand for param(ηa). The substitutions
σ1, σ2, σ3 coincide on ηparA , hence we have only two A-agents
ag1, and ag2, for each of the two sessions. Agents are named
as follows: ag1 and ag2 as alice = σ1(A) = σ2(A) = σ3(A);
ag3, ag4, ag6 and ag7 as bob = σ1(C) = σ2(C); ag5 and ag8

as charlie = σ3(C).

2) States of a PS: Each agent ag of a PS IPr,Σ,nsess is
endowed with a local state sag , which keeps track of messages
ag receives and sends, but also of the reasoning w.r.t. privacy
applied to these messages.

Definition 5 (Local/Global States in a PS.) Let ag be an agent
of IPr,Σ,nsess . A local state sag of ag consists of:

• a set of concrete terms, terms(sag), called knowledge-set;
• a multimap F = {τ1 7→ t1, . . . , τs 7→ ts}, linking

abstract terms to concrete terms, called frame and denoted
frame(sag);

• an integer variable recording the stage in the agent’s
execution called protocol step and denoted step(sag).

A global state in the PS is a tuple s = (sag)ag∈Ag .

Knowledge-sets & Frames: The knowledge-set
terms(sag) contains the concrete terms/values that agent ag
initially knows via the role instantiation, as well as those that
ag generates, sends and receives.

The frame frame(sag) tracks concrete messages that ag
gathers by their abstract-term signature. Consider that ag
receives a concrete message f(t), which ag may not even
be able decrypt. From the protocol description, ag knows the
message is an instance of the abstract term f(τ). In that case,
ag adds f(τ) 7→ f(t) to its frame; in Section III-D4, we
formalise how such mappings are systematically added into an
agent’s frame following a protocol action.

An honest agent’s frame is a map, i.e., each abstract term
uniquely maps to a message, since an honest agent is linked to
a single session. However, the intruder’s frame is a multimap,
i.e., one abstract term can be associated to several concrete
terms, to account for the intruder being present in several
sessions.

Initial States: Every agent is endowed with an initial
state. Within, the step variable is initialised at zero. Then, an

initial knowledge-set stores the agent’s initial knowledge (e.g.,
names, long-term keys). And, an initial frame captures the
agent’s role setup (e.g., intended recipient).

Definition 6 (Initial Local/Global States of a Privacy Sys-
tem.) The initial local state s0

ag of an honest agent ag =
(σ(param(ηA)), i) consists of:
• the knowledge-set Public ∪ Secretag ∪ σ(param(ηA)),
• the frame {τ 7→ σ(τ) |τ ∈ param(ηA)}∪{self 7→ name(ag)},
• the step step(s0

ag) = 0,
such that: Secretag contains ag’s secret key, and all (long-term)
keys that ag shares with other agents; Public contains constants
in F0, names in DA, and the public keys in DK ∪ pubk(DA).
The initial state s0

I of the intruder consists of:
• the knowledge-set Public ∪ SecretI
• an empty frame
• the step step(s0

I) = 0, where
SecretI contains I’s secret key, and – when modelling agents
being corrupted by I – SecretI also includes the secret key
of such agents.

An initial global state is a tuple s0 = (s0
ag)ag∈Ag .

3) Deductions on PS Local States: On the knowledge-
set of a local state, we apply Paulson’s well-known “synth”
and “analz” operators [27]; these model agents’ ability to
construct or destruct terms from/into their components. We
recast Paulson’s definitions over our protocol signature (V,F)
and equation theory =E .

Definition 7 (Analz and Synth [27].) Let T be a set of
concrete terms. Closure of T under synthesis/constructors,
synth(T), is the least set that contains T, and if synth(T)
contains the terms t1, . . . , tn (for some n ≥ 1) and f ∈ F∗c of
arity n, then synth(T) contains f(t1, . . . , tn).

Closure of T under analysis/destructors, analz (T), is the
least set that contains T, and if analz (T) contains constructor
terms t1, . . . , tn (for some n ≥ 1) and there is a destructor
symbol g ∈ Fd of arity n such that g(t1, . . . , tn) =E t, then
analz (T) contains t.

The closure under synthesis and analysis of a set of concrete
terms T, denoted T, is the set given by synth(analz (T)).

We introduce analzP , which lifts the standard analz operator
to our notion of frame. Intuitively, analzP allows an agent
which has the mapping τ 7→ t already in its frame, to augment
its frame with the mapping τ ′ 7→ t′, for subterms t′ of t and
appropriate τ ′s.

Definition 8 (Privacy-driven Analysis: analzP) Given a tuple
(F,T) where F is a frame and T is a knowledge-set,
analzP (T,F) is the smallest frame such that:
1) F ∈ analzP (T,F)
2) if (f(τ1, . . . , τn) 7→ f(t1, . . . , tn)) ∈ analzP (T,F), with

f ∈ F∗c , and t1, . . . , tn ∈ analz (T), then (τi 7→ ti) ∈
analzP (T,F) for each i ∈ {1, . . . , n}.

3) if f(τ1, . . . , τn) 7→f(t1, . . . , tn)∈analzP (T,F), with f ∈
Fc,

a) if there is a unary destructor function g ∈ Fd and there
is a j in {1, . . . , n}, such that g(f(t1, . . . , tn)) =E tj ,
then (τj 7→ tj) ∈ analzP (T,F).

b) if there is a binary destructor function g ∈ Fd and there
is a j in {1, . . . , n}, such that g(f(t1, . . . , tn), t′)=E tj
for some t′∈analz (T), then τj 7→ tj ∈analzP (T,F).

Definition 8-2) captures a deduction by “exhaustively” applying
public constructor symbols in F∗c to known messages, similarly
to a dictionary attack, as per the next example.

Example 5 (analzP via public constructors.) Assume that,
alice sends m = {alice}pubk(bob) to bob. The intruder inter-
cepts m, and adds the mapping {A}pubk(B) 7→ m into its frame.
The intruder cannot decrypt m. However, having the name
alice and the key pubk(bob), it can reconstruct m. Thus, via
analzP (Definition 8.(2)), the intruder deduces the mappings
A 7→ alice and pubk(B) 7→ pubk(bob).

Definition 8-(3) captures a deduction based on applying
destructor symbols in Fd, when all the necessary “destructing”
ingredients are T, as illustrated by Example 6 below.

Example 6 (analzP via destructors.) Consider an instance of
PrivAuth, where an agent ag named alice sends the message
m = {alice, n}pubk(bob). If an agent ag′ named bob receives
m, it stores the mapping {A,NA}pubk(B) 7→ m. As ag′ can
also decrypt m, m and n are added into its knowledge-set.
Then, by applying analzP (Definition 8.(3)), ag′ deduces the
mappings A 7→ alice, NA 7→ n.

4) State-Updates in a PS: A global state encapsulates the
result of several substitutions of Σ. So, a global state s can be
updated via the same action act in different ways, depending
on the substitution σ considered when applying act to s. To
this end, we introduce the notion of event.

Definition 9 (Event.) An event e in a PS IΣ,Pr,nsess is a tuple
(act, σ, n), where act is an action in Pr, σ is a substitution in
Σ, and 1 ≤ n ≤ nsess . If act is a send action, then e is a send
event. If act is a receive action, then e is a receive event.

An event e acts on a global state s producing a state-update
from state s to s′, written s′ = update(s, (act, σ, n)). The
function update is projected on every local state sag of s, and
the event (act, σ, n) is applied to these local states sag. We
formalise update(s, e) below.

Definition 10 (The update Function for a Send Event.) Let
s be a state and e = (act, σ, n) be a send event with act =
i.A ! : test(Φ) (Vτ) τ . Let ag = σ(param(ηA), n) be the
sending agent, σ(Vτ) denote the concrete instantiations of the
fresh terms Vτ , and t = σ(τ) – the concrete, sent value for the
abstract term τ . The enabling conditions for update(s, e) are:

t ∈ terms(sag) ∪ σ(Vτ) (1)
step(sag) = i− 1 (2)
s |=σ Φ (3)

and the updated state s′=update(s, e) is as follows:

• for the sending agent ag:

step(s′ag) := step(sag) + 1 (4)
terms(s′ag) := analz (terms(sag) ∪ σ(Vτ) ∪ {t}) (5)
frame(s′ag) := analzP (terms(s′ag), F), (6)

where F = frame(sag) ∪{τf 7→σ(τf) | τf ∈ Vτ} ∪ {τ 7→ t}
• for the intruder I:

terms(s′I) := analz (terms(sI) ∪ {t}) (7)
frame(s′I) := analzP (terms(s′I), frame(sI)∪{τ 7→ t}) (8)

• for all the other agents ag′ 6∈ {I, ag}:

s′ag′ := sag′ (9)

Condition (1) for sending t is standard: t can be sent only
if it can be composed out of the terms in ag’s knowledge-
set terms(sag). Condition (2) on step is self-explanatory.
Condition (3) requires the formula Φ to hold2 at the state
s. In the state-updates (4), (5), (6) the agent increases his
protocol steps, and records the data generated and sent in his
state. The updates (7) and (8) mean that the intruder intercepts
the message being sent, as per the usual Dolev-Yao intruder
model.

After adding a new term to the knowledge-set and mapping
it into the frame, all state-updates include the analz operator
being applied to the new knowledge-set and the analzP

operator being applied to the new frame, both in the case
of the sending agent ag and of the intruder I.

Definition 11 (The update Function for a Receive Event.)
Let s be a state and e = (act, σ, n) be a receive event with
act= i. A ? : (testpre(Ψ), testpost(Ψ

′)) τ . Let the receiving
agent be ag = σ(param(ηA), n), and t = σ(τ) denote the
concrete, received value for the abstract term τ . Let Vτ be a
possibly empty set of subterms of τ chosen by the intruder,
i.e., Vτ = {T ∈ Subterms(τ)|σ(T) ∈ terms(sI)}.

Then, the enabling conditions for s′=update(s, e) are

t ∈ terms(sI) ∪ σVτ (10)
step(sag) = i− 1 (11)
s |=σ Ψ and s′ |=σ Ψ′ (12){

for all (τ ′ 7→ t′) in analzP (terms(sag)∪{t}, {τ 7→ t})
if (τ ′ 7→ t′′) in frame(sag), then t′ =E t′′

(13)

and the updated state s′=update(s, e) is as follows,
• for the receiving agent ag:

step(s′ag) :=step(sag) + 1 (14)
terms(s′ag) :=analz (terms(sag) ∪ {t}) (15)
frame(s′ag) :=analzP (terms(s′ag), frame(sag)∪{τ 7→ t}) (16)

• for the intruder I:

terms(s′I) := analz (terms(sI) ∪ σ(Vτ) ∪ {t}) (17)
frame(s′I) := analzP (terms(s′I), F), (18)

where F = frame(sI) ∪ {τc 7→σ(τc) | τc ∈ Vτ} ∪ {τ 7→ t}

2This satisfaction is formally defined later, via the semantics of our logic
(Definition 19), and Φ is evaluated at a state together with a run.

• for all the other agents ag′ 6∈ {I, ag}:

s′ag′ :=sag′ (19)

Condition (10) stipulates that all that is received on the
network is injected/forwarded by the intruder. Condition (11)
on step is self-explained. Then, condition (12) requires that
the state s before the receive satisfies ψ and the future state
s′ would satisfy ψ′. The enabling condition (13) denotes a
“matching-receive” à la [31], and says that an agent accepts
only messages that match their already-formed view of the
execution. This is enforced by requiring any mapping (τ ′ 7→ t′)
that could result from adding the incoming term t, deducible by
the agent via analzP , should be consistent with the previous
entries in the frame.

The updates (14) on step, (15) on adding t to the knowledge-
set, and (16) on adding τ 7→ t to the receiver’s frame are
self-explained. Updates (17) and (18) show that a receive by
an agent is in tandem with a send by the intruder. Note that
analz and analzP are applied to the updated knowledge-set
and updated frame, respectively.

Remark 1 Our protocol semantics above assumes a standard
Dolev-Yao attacker. A possibly odd-looking aspect appears
only in (10), where we explicitly name the new values σ(τc)
generated by I for composing the sent message σ(t). This
is just so that, in (18), we can concretely record inside I’s
updated frame the mappings τc 7→ σ(τc), corresponding to
these generated values σ(τc).

Definition 12 (The update Function for an Event via a Branch-
ing Send Action.) Let s be a state, let ag=σ(param(ηA), n)
be the sending agent with A in an event e = (act, σ, n) as
follows:

act = i.A ! : test(Φ) (Vτ0) τ0 | A ! : test(¬Φ)(Vτ1) τ1.

Then, the enabling conditions for s′=update(s, e) are:

step(sag) = i− 1 (20)
if s |=σ Φ then σ(τ0) ∈ terms(sag) ∪ σ(Vτ0) (21)

if s 6|=σ Φ then σ(τ1) ∈ terms(sag) ∪ σ(Vτ1) (22)

and the updated state s′=update(s, e) is
• for the honest agent ag and agents ag′ ∈ Ag \ {ag,I}:

the same as for simple send action using t = σ(τ0) and Vτ0
or t = σ(τ1) and Vτ1 , depending on the truth of s |=σ Φ, with
the exception of the frame of the intruder.

• for the intruder I, irrespective of whether s |=σ Φ:

frame(s′I) := analzP (terms(s′I, frame(sI)∪{τ0 7→ t, τ1 7→ t}))
(23)

The update (23) stipulates that the intruder cannot predict
the correct signature of an intercepted term, when the latter
comes from a branching send. Hence, the intruder records both
possible mappings. Afterwards, the intruder may make further
deductions with one of the mappings.

Similarly, a receiving agent cannot know upfront the correct
signature of an incoming term. Thus, the semantics of a
branching receive follows the fashion of (23). Without repeating
details to formally give this definition, we note that the frame
update for the receiving agent (16) becomes:

frame(s′ag) := analzP (terms(sag, frame(sag)∪{τ0 7→ t, τ1 7→ t}))

5) Executions: A protocol execution ξ is a sequence of
events. Starting at an initial global state s0 and applying in
series the events in a sequence ξ results in a (global) system-
state denoted infstate(s0, ξ), formalised below.

Definition 13 (States Updated via Executions.) Let s0 be an
initial global state, ξ be an execution, e be an event and the
function update be as per Definitions 10, 11, 12. The function
infstate is defined inductively as follows:

infstate(s0,∅) = s0

infstate(s0, ξ · e) = update(infstate(s0, ξ), e),

where ∅ denotes an empty sequence of events.

6) States Indistinguishability: To define state indistin-
guishability, we encode the “sense an agent makes” out of
the terms, given his current state. For this, we use the notion
of pattern [32], which intuitively says that “undecipherable”
terms have the same “pattern”/meaning to an agent. We state
the definition of patterns in Appendix A.

Definition 14 (Equivalences of Concrete Terms) We say that
two sets T and T′ of concrete terms are equivalent, denoted
T ≡ T′, if pat(T) = pat(T′).

We are now in the position to define, what it means for an
agent to tell apart two of their states. Agents reason on patterns
of terms and can see decipherable terms for what they are, and
all undecipherable terms are equal.

Definition 15 (States’ Indistinguishability.) Let ag be an agent,
and sag = (T,F, step), s′ag = (T′,F′, step′) be two of its
local states. Then, sag and s′ag are indistinguishable by ag,
written sag ≈ s′ag, if there is a bijection θ on nonces and
short-term keys such that:

1) step = step′, Tθ ≡ T′, and dom(FT) = dom(F′T′)
2) for all d ∈ dom(FT), card(imFT

(d)) = card(imF′
T′ (d))

3) for all d 7→ t ∈ FT, there exists d 7→ t′ ∈ F′T′ such that
pat(tθ,Tθ) = pat(t′,T′)

4) for all d 7→ t′ ∈ F′T′ , there exists d 7→ t ∈ FT such that
pat(tθ,Tθ) = pat(t′,T′),

where card(X) is the cardinality of a set X .
We say that two global states s and s′ are indistinguishable

by agent ag, written s ∼ag s′, if the respective local state of
ag are indistinguishable, i.e., if sag ≈ s′ag .

The definition above says that two states are indistinguishable
to ag, when the three components of the states are indistin-
guishable: the step, the knowledge-set, and the frame. Recall
that at each state-update frames are closed under analzP ; then,
two frames are equivalent if they have the same domain of

abstract terms, the same size, and –as per points 3 and 4
in Definition 15– for each mapping in one, one can find an
equivalent mapping in the other.

Example 7 Consider two local states (T,F, step) and
(T′,F′, step) of some agent ag. Assume that:

T = {x, y, {0}pubk(f(x,y))},
T′ = {x, y, {1}pubk(f(x,y))},
F = {X 7→ x, Y 7→ y, {Z}pubk(f(X,Y)) 7→ {0}pubk(f(x,y))},
F′ = {X 7→ x, Y 7→ y, {Z}pubk(f(X,Y)) 7→ {1}pubk(f(x,y))}.

Then, knowledge-sets T and T′ are equivalent according
to Definition 14. To compare F and F′, observe that all
ingredients 0, x, y of the message {0}f(x,y) are in T (since 0

and 1 are constants). By Definition 8-(2) of analzP (i.e., by
public construction), (Z 7→ 0) is in analzP (T,F). Similarly,
(Z 7→ 1) is in analzP (T′,F′). Hence, the mapping of Z makes
the two states distinguishable by ag.

However, if T = {x, y, {n}f(x,y)} and T′ =
{x, y, {n′}f(x,y)} for some nonces n, n′ that are not in the
knowledge-sets T,T′, then the two above states are indistin-
guishable because Definition 8-(2) would not apply (as nonces
are not public constants).

IV. EPISTEMIC LOGIC FOR PROTOCOLS’ PRIVACY

We now present the syntax of PL, our logic of knowledge
for encoding privacy. Some of the illustrations are based on
the PrivAuth protocol given in Example 1, and others on the
so-called “Basic-Hash” protocol [7] described in Example 8.

A. Privacy Logic PL – Syntax
The syntax of PL is on top of our protocol signature (F ,V)

and domain D of concrete terms.
Logic Variables: First, we consider a set XAg of logic

agent variables ag which are handles to agent. Second, we
consider a set X of logic protocol variables x, y, Variables
in X reflect data linked to a protocol description, and include
sorted variables overloading protocol variables. The latter are
particularly useful when encoding tests in protocol actions (e.g.,
formula β in Example 2).

Logic Terms: Because we overload protocol variables to
logic variables, our algebraic signature (F ,V) becomes also a
logic signature by natural extension, i.e., any functional symbol
f becomes a first-order logic predicate f . So, any algebraic
abstract term in T (F ,X) also has a corresponding logic term.
The Greek letter θ denotes a generic logic term.

Index Logic Terms & Indexed Predicates: We define
another set of terms called index logic terms: agent in Ag
or logical variables in XAg . These are used to index predicates
and epistemic operators to create an indexed logic.

We introduce families of predicates indexed on indexed terms:
(hasag(·))ag∈Ag , (linkag(τ, ·))ag∈Ag,τ∈V and (·∈ Sag)ag∈Ag .
The predicate hasag(t) reads as “agent ag has the (concrete)
term t”, linkag(τ, n) reads as “agent ag links the protocol
variable τ to the (concrete) term t, t ∈ Sag reads as “the

(concrete) term t belongs to ag’s whitelist”. Their meanings
will be clarified in the semantics.

Formulas in PL: These are given over the above indexed
predicates, augmented with the family of epistemic operators
(Kag)ag∈Ag, logical connectives, and quantifications. The
formula “Kag φ” reads: “agent ag knows φ”.

Definition 16 (PL Syntax.) A PL formula is given by:

ϕ ::= hasu(θ) | linku(τ, θ) | θ∈Su | Kuϕ | ¬ϕ | ϕ∧ϕ
| ∀x :DX · ϕ | ∀x :Ag · ϕ

where θ is a logic term, u an index term, τ a logic term, x a
logic variable in X ∪ XAg , DX one of DA, DK, and DN .

B. Privacy Logics PL – Semantics

Variables Assignment: An assignment α of logic variables
is the tuple α =(α1, α2) of two functions: the sort-respecting
α1 : X → D, and α2 : XAg → Ag.

Agents Active at a State: Assignments are used as per the
usual in interpretations of logical formulae. In this vein, we
note that logical protocol variables x ∈ X are interpreted over
constant domain D, whereas logical agent variables x ∈ XAg
are interpreted over a varying domain, which is state-dependent,
as per the following definition.

Definition 17 (Active Agents at State s.) The domain Agact(s)
for agent variables’ values at a state s is the subset of Ag
given by the agents active at s:

Agact(s) = {ag ∈ Ag | sag 6= s0
ag}

The intruder I is part of the set Agact(s) for any state s,
whenever a protocol execution has started.

Values for Logic Terms: As per Section IV-A, our algebraic
signature (V,F) is mapped to a logic signature, and our logic
terms largely overload algebraic abstract terms. So, as algebraic
abstract terms get mapped to concrete terms (i.e., values), so
do logic terms, as defined below.

A valuation V α for logic terms and index logic terms under
a variable assignment α is a function, as follows:
• V α(ag) = ag, if ag ∈ XAg;
• V α(x) = α(x), if x ∈ X ;
• V α(f(θ1, θ2, . . .))=f(V α(θ1), V α(θ2), . . .), for f ∈F .

Any concrete algebraic term t just becomes a concrete logic
term, i.e., V α(t) = t.

Interpretation of PL formulas: First, we need to explain
how the states of our transition-system in the protocol semantics
are unravelled, in the shape needed for PL logic formulas to
be interpreted.

Definition 18 (Kripke Models for a PS) The unwound model
of a PS produced from initial states via executions is a Kripke
structure M = (W, (∼ag)ag∈Ag), where W is the set of global
states reachable via the infstate function, and ∼ag is the
indistinguishable relation for each agent ag.

Now, we can give the truth valuation of PL formulas.

Definition 19 (Truth Valuation of a PL Formula.) Let
IΣ,Pr,nsess be a PS, M = (W, (∼ag)ag∈Ag) be its unwound
model, and s ∈W be a global state in M . Let θ be a logical
term, u be an agent index term, x be a logical variable, d be
an abstract term, and α be a variable assignment.

The truth valuation of a formula ϕ ∈ PL at (M, s), denoted
by (M, s) |= ϕ, is given as follows:

1. (M, s) |=α ¬Φ iff (M, s) 6|=α Φ

2. (M, s) |=α Φ ∧Ψ iff (M, s) |=α Φ and (M, s) |=α Ψ

3. (M, s) |=α hasu(θ) iff V α(θ) ∈ terms(sV α(u))

4. (M, s) |=α θ∈Su iff V α(θ)∈SV α(u)

5. (M, s) |=α linku(d, θ) iff (d 7→ V α(θ)) ∈ frame(sV α(u))

6. (M, s) |=α Kuϕ iff for all s′∈W
with s′ ∼V α(u) s, (M, s′) |=α ϕ

7. (M, s) |=α ∀x :DX · ϕ iff for all t ∈ DX

(M, s) |=α∪{x 7→t} ϕ

8. (M, s) |=α ∀x :Ag · ϕ iff for all ag ∈ Agact(s)

(M, s) |=α∪{x 7→ag} ϕ

where α∪{x 7→ t} is the extension of the variable assignment
α with the mapping x 7→ t for x being as defined and t being
a sort-respecting value in D.

C. Informal Meaning of Formulas in PL
Predicates has and link : The predicates has expresses

a “possession-type” knowledge. For a concrete name alice,
hasag(alice) says that agent ag possesses (can deduct) the
name alice, and this is trivially true if names are public
knowledge. On the other hand, link associates a protocol
variable to its instantiation in a protocol run, and so –
it naturally expresses privacy. For instance, the statement
linkag(voteV , alice) holds when ag can deduct via analzP

that the agent of role V voted for alice.
Knowledge Operators: Our epistemic operators are standard:

an agent knows about the actual global state only as much as
it can “see” from its local state. Thus, an agent ag knows a
fact in a given global state s (in one run) iff that fact holds in
any reachable global state s′ that agent ag cannot distinguish
from s (even across other runs).

Quantifications: Quantifications over one of the finite
subdomains of D reduce to finite disjunctions and conjunctions.

When quantifying over agents, recall that we only quantify
over active agents Agact(s) (Definition 17) rather than the
entire set Ag. To see the need for this, consider the formulas
ϕ0 = ∃x : Ag · namedx(alice) ∧ playsx(A). If we let x to
range over the whole Ag, then ϕ0 would hold at any state.
This is because the entire Ag contains every possible agent,
for any name, playing any role. By restricting to Agact(s), we
get more information from ϕ0: i.e., that there exists an agent
named alice who sent or received a message up to state s.

D. Equality in PL via link

Our definition of the semantics of link (Definition 19-5) as
a set-membership allows us to emulate term-equality with our

logic. The following example illustrates this.

Example 8 (The Basic-Hash Protocol [7].) In this protocol,
each tag T has a secret key KT . A reader R maintains a list
SR containing the secret keys of tags that the reader accepts.
A tag T initiates a session by sending a fresh nonce NT and
the hash of the pair 〈NT,KT 〉. After receiving a message
〈NT, hash(〈NT,KT 〉)〉, a reader computes hash(NT, x) for
every key x in its database, until it matches hash(〈NT,KT 〉).

In our formalism, this protocol is modelled with a tag role,
which consists of the send action

1.T ! : ({NT})〈NT, hash(〈NT,KT 〉)〉,
and a reader role, which consists of the receive action

1.R ? : test(True, φlookup) 〈NT, hash(〈NT,KT 〉)〉,
where φlookup is the formula
∃x : DK · x ∈ SR ∧ linkR(hash〈NT,KT 〉, hash〈NT, x〉).

As we said, we will explain that the link -based postcondition
φlookup used in our encoding of this protocol emulates checking
term equality.

Concretely, equality for hash checking needed in this this
protocol is modelled via evaluating the postcondition φlookup,
at the state of the receiving tag agent. To see this, assume
that a tag-role agent ag is receiving σ(hash(〈NT,KT 〉) at
one of its state sag. For agent ag to progress, the post-
condition formula φlookup has to hold at one of ag’s intermediate
state s′ag where (hash(〈NT,KT 〉)〉 7→ σ(hash〈NT,KT 〉)) ∈
frame(s′ag) and σ(NT), σ(hash〈NT,KT 〉) ∈ terms(s′ag).
And, s′ag |= φlookup holds only if there exists k ∈ Sag, such
that (hash(〈NT,KT 〉)〉 7→ hash〈σ(NT), k〉)) ∈ frame(s′ag).
This will be true only if the equality σ(hash〈NT,KT 〉) =
hash〈σ(NT), k〉) holds. If the post-condition φlookup fails,
then the receiving tag-role agent ag does not update its state.

Example 9, in Appendix B, gives an alternative modelling
of hash/equality checking, with an explicit lookup-fail.

E. PL’s Indexing over Agents & Names
In this subsection, we show how using quantification over

agents of the same name can help us encode other privacy
expressions. First, we define some “helper” predicates.

Helper Predicates: Just for ease of explaining our logics
constructs, we define two helper predicates, defined based on
the link predicate, namely named and plays , such that

namedag(a) := linkag(self , a)

playsag(A) := linkag(A,name(ag)) (for3 ag 6= I.)

The predicate namedag(a) means that the agent ag is named
a, for a ∈ DA. The predicate playsag(A) means that the agent
ag plays the role A.

Name-indexed Predicates: Let a be an agent name in DA,
θ a concrete logic term, and d an abstract term. We define:

hasa(θ) := ∃x : Ag · namedx(a) ∧ hasx(θ)

linka(d, θ) := ∃x : Ag · namedx(a) ∧ linkx(τ, θ)

θ ∈ Sa := ∃x : Ag · namedx(a) ∧ θ ∈ Sx
playsa(A) := ∃x : Ag · namedx(a) ∧ playsx(A)

First, the predicate hasa combines the knowledge-sets of
(active) agents named a at the state where hasa is interpreted;
so, hasa(θ) pins down the group of agents named a that have
the term θ. Second, the predicate linka(τ, θ) denotes that some
agent named a links the abstract term τ to the concrete term
θ. Third, the predicate θ ∈ Sa is true if θ is in the whitelist of
some (and every) agent named a that was active at the state
where θ ∈ Sa is interpreted.

V. ENCODING PRIVACY IN PL
In this section, we exemplify our encodings of privacy,

anonymity and unlinkability via PL formulae. As before, we
illustrate via the PrivAuth protocol given in Example 1, and
the Basic-Hash protocol [7] shown in Example 8. Stemming
from these two protocols, we speak of agents of role A and C
(i.e., agA, agC) and agents of role tag T and reader R (i.e.,
agT , agR).

In Section VI, we verify these expressions shown here, as
well as others.

A. Anonymity
Anonymity hides the identity of actions’ performers. The

second goal of PrivAuth is a “role-based anonymity” for the
protocol-roles A and C. I.e., anonymity of role C means
observers (possibly other than the intruder) cannot relate the
C-role to the name of the agent who performs it.

We encode this via minimal anonymity and total anonymity
à la [11]. “Minimal anonymity” corresponds to an identity
remaining hidden with respect to an anonymity set of just two
elements. In “total anonymity”, this hiding is with respect to
the largest “anonymity set” possible.

The minimal anonymity of C is expressed as follows.

Property 1 (PrivAuth’s 2nd Goal: Minimal Anonymity of C)

∀x : Ag · ∀a : D∗A · (pubk(x) 6∈ Sa ∧ ¬namedx(a))⇒¬Kx(playsa(C))

where pubk(x) 6∈ Sa := (6 ∃b · namedx(b) ∧ pubk(b) ∈ Sa).
The implicant in Property 1 specifies the set of observers

to be any agent not named a and outside a’s whitelist; these
should not know that agents named a play the responder role.
The logic variable a is taken from the domain D∗A, meaning
we look at the anonymity of parties other than the intruder.
However, as expected, the variable x for the observers ranges
over active agents, which include the intruder.

In general: for an observer x not know playsa(C) at a state
s, it suffices that x cannot distinguish s with another state s′

where playsa(C) does not hold: at s′, there is a name d, d 6= a,
such that playsd(C). However, the concept of maximality in
Property 2 below requires that any other name d may be
playing C.

Property 2 (PrivAuth’s 2nd Goal: Total Anonymity of C)

∀x : Ag · ∀d : D∗A · ¬namedx(d)⇒ ¬Kx(¬playsd(C))

Note the difference between the set of observers in Property 1
and 2. In Property 1, an agent x named b such that pubk(b) ∈
Sa may know that playsa(C) (by successfully executing the

protocol). In contrast, in Property 2, such an agent should not
know that a is not playing C.

B. Privacy of Interlocutors.
Now, we formulate the third goal of PrivAuth, which says

that if A ∈ SB , only B and A should know this: B by virtue
of owning SB , and A by executing the protocol. For this, we
encode that observers from outside of their b’s whitelist should
not know who is in b’s whitelist Sb:

Property 3 (PrivAuth’s Third Goal: Privacy of Interlocutors)

∀x : Ag · ∀a : DA · ∀b : D∗A·
(¬namedx(a) ∧ ¬namedx(b))⇒ ¬Kx(pubk(a) ∈ Sb)

This part of PrivAuth’s third goal says the following: when
pubk(a) ∈ Sb, an agent named a is allowed to know this; and
whoever is not named a or b is not allowed to know this. The
name b ranges over D∗A, which (again) excludes the intruder,
as we do not require the intruder’s privacy.

Now we express the second part of the goal, i.e., that
observers should not know who is not in b’s whitelist Sb:

Property 4 (PrivAuth’s Third Goal: Privacy of Interlocutors)

∀x : Ag ∀a : DA ∀b : D∗A·
(¬namedx(b) ∧ ¬namedx(a)⇒ ¬Kx(pubk(a) 6∈ Sb))

Property 4 requires that when a 6∈ Sb, the agent a should not
know that. Intuitively, this is achieved in PrivAuth when a
plays A and b plays C: the a-agent cannot distinguish between
a decoy message saying “I am not b” and a decoy message
saying “I am b, but I am not interested”.

C. Unlinkability
In the ISO/IEC-15408 standard, unlinkability is expressed as

the guarantee that a party may make multiple “appearances”,
without others being able to link them, e.g., an intruder not
linking different “presences” of the same participant in different
protocol sessions.

• To exemplify unlinkability, we use the Basic-Hash protocol
[7] shown in Example 8, and we speak agents of tag role T
(i.e., agT) and of reader role R (i.e., agR) .

• In the following expressions of unlinkability, we consider
only the intruder to be the observer.

To ease the notation, we use the following syntactic sugar
for quantifying over agents playing a specific role:

∃x : AgT · φ := ∃x : Ag · playsx(A) ∧ φ.

Strong Unlinkability: Strong unlinkability [2] requires that
the intruder cannot distinguish a protocol execution comprised
of any n concurrent sessions from an idealised execution
formed by n sessions executed with n different parties. Strong
unlinkability fails when the intruder knows that at least two,
among n sessions, are linked. To ensure strong unlinkability,
the following formula must hold for any n-sessions execution.

Note 2: If the attacker was –for instance– to link two sessions
amongst themselves because a static information in each (e.g.,

a long-term of the party executing it), then strong unlinkability
would fail trivially. Synonymously, a valid attack against this
property can be “easy” to mount. We will detail this further
in Note 3 and Note 4, in the context of weak unlinkability as
well.

Property 5 (Strong Unlinkability by Name.)

¬KI

(
∃t1, . . . , tn−1 : DA · ∀x : AgT ·

∨
i∈{1,...,n−1}(named(x, ti))

)
Property 5 fails if the intruder knows that at most n− 1 names
of tags could be playing T , in the n observed sessions.

We continue with strong session-unlinkability by key. F or
this, consider that a group of tags (playing role T) may share
the same key KT .

Session-unlinkability by key prevents the intruder to know
if the same key was used twice in n sessions; this is expressed
in PL as follows:

Property 6 (Strong Unlinkability by Key.)

¬KI

(
∃k1, . . . , kn−1 : DA · ∀x : AgT ·

∨
i∈{1,...,n−1}(linkx(KT, ki))

)
Note 3: Strong unlinkability by name/by key fails when the

intruder knows there are at least two T -sessions with the same
name/key, although it does not know which sessions are linked.
In other words, for strong unlinkability to fail, the intruder
need not know the name/key explicitly or in a meaningfully-
identifiable way. So, this unlinkability notion is “strong”, since
its failure is conceived by a rather “weak” attack.

Weak unlinkability: Weak unlinkability requires that the
intruder does not know whether any two given sessions are
linked to each other. To express weak unlinkability, we extend4

our logic with equality between (honest) agents. Then, weak
unlinkability of the tag T is given by:

Property 7 (Weak Unlinkability.)

¬
(
∃x1 6= x2 : AgT ·KI

(
∃t : DA ·

∧
i∈{1,2} namedxi(t)

)
Property 7 is weaker (than the earlier notion of strong
unlinkability), as it fails only when intruder can pinpoint the
exact two sessions that are linked. To better see this contrast
between weak and strong unlinkability, perhaps observe the
following reformulation of strong unlinkability using agents
(in)equality, below:

¬
(
KI

(
∃x1 6= x2 : AgT · ∃t : DA ·

∧
i∈{1,2} namedxi(t)

)
Strong unlinkability, now as per the above formulation, fails if
the intruder knows the existence of a link between two sessions,
although it may not know which two sessions are actually linked
(i.e., although, weak unlinkability as per formula 7 would not
fail). So

Note 4: See that, in our weak-unlinkability encoding as per
formula 7, the tag agents x1, x2, are existentially quantified
outside the scope of K, whereas –in our weak-unlinkability
encodings as per the formula 6– the tag agents x1, x2, are

4This can be done easily (e.g., by checking their assigned id in the modelling),
and we omitted the formalisation of agents’ equality, for sake of clarity.

existentially quantified inside the scope of K. So, from a logic-
formalism viewpoint, refuting the strong-unlinkability formula
is easier compared to the weak strong-unlinkability; in the
latter, (checking) its refutation would span the whole reachable
state-space.

Remark 2 (Weak and Strong Anonymity) Analogously to
the notions of weak and strong unlinkability, in fact, we can
also distinguish between weak and strong anonymity (despite
not doing so earlier in this section). In fact, in our earlier
encodings of anonymity in Property 1 and Property 2, each
corresponds to a notion of stronger anonymity. To see this,
let us rewrite, e.g., Property 1 as a negation of an attack, and
replace the syntactic sugar playsa(A) with its meaning; then,
we get:

¬
(
∃x : Ag · ∃a : D∗A · ¬namedx(a) ∧ pubk(x) 6∈ Sa

∧Kx(∃y : AgA · namedy(a))
)

In the above, note that the A-agent y is existentially quantified
inside the scope of Kx; so, strong anonymity here may fail
simply when the observer x knows a played the role A, even
if x does not know for a fact which A-agent y is identifiable
as a (i.e., in which session a played).

Contrary to the above, weak anonymity is encoded as:

¬
(
∃x : Ag · ∃a : D∗A · ∃y : AgA · ¬namedx(a) ∧ pubk(x) 6∈ Sa

∧Kx(namedy(a))
)

Now, note that for weak anonymity to fail, one needs a rather
strong attack: i.e., this attack implies that x knows exactly that
a fixed A-agent y is identifiable as a given a.

Like with unlinkability, strong anonymity is can be more
readily embodied as plausibilistic privacy, whereas weak
anonymity is less so.

VI. MECHANISED PRIVACY ANALYSIS

Now, we present Phoebe, an epistemic model checker
for privacy analysis of cryptographic protocols, based on the
protocol model and the logic in Sections III and IV.

The source code for Phoebe and use-cases are available at
https://github.com/UoS-SCCS/phoebe.

A. Overview of Our Model Checker Phoebe
Our epistemic model checker Phoebe is written in

Haskell. It takes a protocol specification (i.e., given via
Haskell data types) and a privacy property expressed in PL,
and returns the truth value of the formula (or counter-example
traces) on the model of the protocol given at input.
Phoebe works in the setting of bounded number of agents

and domain D. Agents in Ag are enumerated by exhausting
combinations of agent parameters. We choose the domain-
sizes for nonces and session-keys such that agents’ logical
omniscience [15] is not the case. For a given number of sessions,
all possible executable traces between the agents are generated
(with loose inspiration from [33]), creating session parameters
(nonces and session-keys) on-the-fly.

https://github.com/UoS-SCCS/phoebe

Protocol Formula Scenario Agents Result Time

PrivAuth Neg. of Goal 3 Privacy of whitelists (who is in) DA=[a,b] 4×A; 4× C unsat/private 17s
Neg. of Goal 3’ Privacy of whitelists (who is not in) DA=[a,b] 4×A; 4× C unsat/private 34s
Neg. of Goal 2A (Strong Minimal) Anonymity of Initiator A DA=[a,b] 4×A; 4× C unsat/anonymous 34s
Neg. of Goal 2C (Strong Minimal) Anonymity of Responder C DA=[a,b] 4×A; 4× C unsat/anonymous 27s

PrivAuthX
(without decoy)

Neg. of Goal 3 Privacy of whitelists (who is in) DA=[a,b] 4×A; 4× C sat/attack 0.05s
Neg. of Goal 3’ Privacy of whitelists (who is not in) DA=[a,b] 4×A; 4× C unsat/private 1.44s
Neg. of Goal 2A (Strong Minimal) Anonymity of Initiator A DA=[a,b] 4×A; 4× C unsat/anonymous 0.4s
Neg. of Goal 2C (Strong Minimal) Anonymity of Responder C DA=[a,b] 4×A; 4× C sat/attack 2.16s

BasicHash Neg. of Strong Unlinkability by name DA=[t1,t2,r1] 6× T ; 1×R sat/attack 0.2s
Neg. of Strong Unlinkability by name DA=[t1,t2,t3,r1] 9× T ; 1×R unsat/unlinkable 20s
Neg. of Strong Unlinkability by name DA=[t1,t2,t3,r1] 12× T ; 1×R sat/attack 10s
Neg. of Strong Unlinkability by name DA=[t1,t2,t3,t4,r1] 16× T ; 1×R unsat/unlinkable 51m
Neg. of Strong Unlinkability by name DA=[t1,t2,t3,t4,t5,r1] 25× T ; 1×R time-out >2h
Neg. of Weak Unlinkability by name DA=[t1,t2,r1] 6× T ; 1×R unsat/unlinkable 0.2s
Neg. of Weak Unlinkability by name DA=[t1,t2,t3,r1] 9× T ; 1×R unsat/unlinkable 2s
Neg. of Weak Unlinkability by name DA=[t1,t2,t3,r1] 12× T ; 1×R unsat/unlinkable 31m

TagReader0 Neg. of Strong Unlinkability by key DA=[t1,t2,r1] DK=[k1,k2] 8× T ; 1×R sat/attack 14s
Neg. of Strong Unlinkability by name DA=[t1,t2,r1] DK=[k1,k2] 8× T ; 1×R unsat/unlinkable 45s

LoRaWAN Join v1.1 Neg. of Unlinkabity of DevEUI (via DevAddr) DA=[d1,d2,s1] 2×D; 1× S sat/attack 0.39s

TABLE I: Illustrative Results of Privacy Verification with Our Model Checker Phoebe

B. Verifying Privacy & Unlinkability in Phoebe

Now, we report the results and performance of our verifica-
tion for our case studies. All the computations were performed
on a MacBook Pro 2.6 GHz 6-Core Intel Core i7 with 16 GB
of RAM. All results are summarised in Table I.

Let us first describe aspects of Table I, in general. We check
formulae in PL which express the negation of privacy goals
on well-studied, privacy-relevant protocols. If this negation
is satisfied (e.g., “sat” in column 5), then there is a privacy
attack, and if the negation holds (e.g., “unsat” in column 5),
then the privacy goal mentioned in column 2 holds on the
model considered (and we mark “private”/“anonymous”, etc.,
in column 5). If an attack is not found, larger-bound models5

could be checked (since our verification is bounded, thus not
complete). Yet, clearly, if an attack is found, there is no more
to check w.r.t. the protocol in case. Recall that DA means the
domain of the names of the agents (e.g., ‘a’ – as in “alice”,
‘b’ – as in “bob”, ‘t1’ – as in some tag), etc.

Note 5: The number of agents considered (e.g., column 4)
is higher than needed for the verification undertaken, in order
to report comparative timings. I.e., when the verification result
is positive, we report the times for a large number of agents:
e.g., 16, 12 for the Basic-Hash protocol.

All the verification results (i.e., privacy holding or failing)
in Table I are in line with prior results in the literature, or in
line with the expectation.

1) Privacy Verification for PrivAuth: We specified Pri-
vAuth in Phoebe, in line with our encoding in Example 2 (see
PrivAuth.hs in our source code). To see the value of decoy
messages, we also encoded a “weakened” version of PrivAuth,
without decoy messages. We denote this by PrivAuthX. We
verified both PrivAuth and PrivAuthX against privacy properties
written in PL in Section V. We report the results only for
strong minimal and anonymity, and the two statement for the
privacy of whitelists.

Results. Phoebe found no attack on PrivAuth, in the
settings considered as per Table I. But, it did, as expected,
on PrivAuthX; without decoy messages, in PrivAuthX, the
presence of the responder C and the privacy of the responder’s
interlocutors list are compromised.

5This is the case of other tools in this domain, such as [25].

2) Unlinkability Analysis for the Basic-Hash Protocol:
We specified and verified in Phoebe the “Basic Hash” (BH)
protocol [34], [3] as given in our formalism (see Example 8).
For this protocol, we verified “strong unlinkability” as well
as “weak unlinkability” (by name), i.e., Property 5 and 7 as
presented in Section V-C. Representative results are reported
in Table I.

Results. Strong unlinkability fails only when the intruder
observers more sessions than there are number of possible tags.
An example attack-trace is found at our repository.However,
weak unlinkability is never breached.

3) Further Case Studies: Two more case studies are pre-
sented in Table I and covered in Appendix C and Appendix D: a
“Tag-Reader” protocol in [6] and the LoRaWAN Join v1.1 [24]
against privacy goals recently stated in [35].

Our repository (https://github.com/UoS-SCCS/phoebe) also
contains some example attack-traces.

C. Limitations of Our Method and Phoebe

The tool and the method verify bounded-size models, so
they are incomplete, i.e., they may miss attacks. The method
is sound, due to the Kripke formalisation: i.e., if an attack is
found, it is correct. Hand in hand with this, Phoebe performs
better on finding attacks, as it may search the whole state-space
to prove a formula holds.

Removing the limitation on bounded-size models would
not remove the incompleteness. This is due to two sources
of undecidability: (a) Dolev-Yao privacy-analysis [22]; (b)
epistemic satisfiability in infinite-state systems [36].
Phoebe can be further improved in maturity (as it is, above

all, a proof-of-concept implementation for a new privacy-
verification approach), and efficiency. One source of complexity
is our naive implementation of model checking K. In the
worst case, the evaluation of K scans the entire state-space
of a privacy system. Next, we will check formulas with K
at equivalence classes, not individual states. To bound less
and improve performance, we will switch to lazy model-
checking [36].

VII. RELATED WORK

a) Principled Verification of Privacy with Epistemic
Logics: Halpern and O’Neill [11] gave an epistemic characteri-
sation of anonymity, without explicitly defining a cryptographic

https://github.com/UoS-SCCS/phoebe

indistinguishability relation. Similarly, the epistemic logic
framework by Brusó et al. [3] formally expresses and compares
different notions of unlinkability in a model that abstracts away
cryptography. Syverson et al. [37] axiomatised a bespoke logic
of knowledge for anonymity in a cryptographic setting. All
forego model checking. To allow for verification, Tiplea et
al. [22] reduced epistemic “minimal anonymity”, in one-session,
to a reachability property. On a parallel track, [38] and [39]
proposed non-mechanised ideas of verifying epistemic privacy,
in the specific domains of anonymous protocols, and e-voting,
using a permutation-based cryptographic indistinguishability
relation [38], or one based on pattern-matching of terms [39].
• Our cryptographic indistinguishability relation differ from
both approaches, as it is defined on patterns’ equivalence rather
on frames.

• We summarise the relations to these epistemic-based works
in Table II.

b) Privacy Verification with Non-Epistemic Logics:
“α-β privacy” characterises privacy using logics [40]; Their
attacker is mainly operating on an augmented frame, on which
it attempts to “link” concrete (cryptographic) messages to
abstract (cryptographic) ones. Their formula α specifications
encapsulate what the attacker is cleared to know. We capture
this directly in our privacy-system I , amounts to, e.g., domains
of variables, initial-states setting. In the way of α holding in
[40], we can query whether the attacker “K-knows” general,
non-cryptographic facts. Also, the attacker will “K-know”
privacy-relevant facts implicitly (e.g., due to determinism
not due to cryptography): e.g., property 5/Example ?? fails
due to this. W.r.t. the β formulae in [40], they amount to
the links our attacker creates via analzP , and thus via our
indistinguishability relation ∼.

c) Automated Security and Privacy Verification with
Epistemic Logics: Boureanu et al. [41], [21] developed
automatable verification of epistemic properties. However, they
cater only for security/authentication and not privacy. Tool-
supports for epistemic encoding of privacy properties were
given in [42] and [43]. [42] introduced the Dynamic Epistemic
MOdelling tool for verifying anonymity, but not in a Dolev-Yao
model. [43] analyses vote-privacy, via an ad-hoc compilation
to a “non-Dolev-Yao” model-checker; thus, the loss/gap is
unclear.

d) Automatic Tools for Privacy Verification in Security
Protocols via Trace Equivalences: Privacy properties, such
as anonymity and vote privacy, are often practically verified
once expressed as trace equivalences. The most-known tools for
checking trace-equivalence include DEEPSEC [25], AKiSs [44],
Sat-Equiv [26], APTE [45], SPEC [46].

• These tools all differ on the class of protocols and the
cryptographic primitives that they cover, as surveyed in [25].
All these tools consider a bounded number of sessions, as
does Phoebe. Like DEEPSEC, Phoebe covers protocols
with else branches. However, Phoebe is defined under a fixed
equational theory.

e) Automatic Tools for Privacy Verification in Security
Protocols via Approximations: Arapinis et al. [2] introduced

the notion of strong unlinkability which cannot be encode
as an equivalence between two traces. For 2-party protocols,
Hirschi et al. [6], [7] reduced this unlinkability notion to two
trace properties, plus “frame opacity” – a series of quantified
static equivalences; yet, it is recognised that some observational
equivalences (e.g., weak unlinkability [2]) cannot be reduced
in these ways. In this domain, [47] recently put forward new
process-algebraic observational equivalences, which are coarser
than the classical ones [48], but possibly more amenable to
direct verification of notions such as strong unlinkability by
Arapinis et al.

• An epistemic formula in PL is generally stronger than trace
equivalence, as it compares sets of traces (“congregated” in
one state) to sets of traces (“congregated” in another state) [15].
For that reason, an epistemic formula in PL can be generally
more expressive than Arapinis’ unlinkability [49] too, as that
compares a specific set of traces to a specific set of traces; i.e.,
that forms just a sub-class of models for our logic, not the full
set of models for the logic [15].

f) Automatic Tools for Privacy Verification in Security
Protocols via Diff-Equivalences: ProVerif [50], Tamarin [51]
and Maude NPA [52] have been extended to verify privacy
using diff-equivalence [53], [54], [55]. Whilst these tools allow
for unbounded number of sessions, diff-equivalence is an over-
approximation of observational equivalence, which may lead
to false attacks w.r.t. privacy, or be impractical for properties
such as unlinkability [4].

g) Summative Comparison between Automated Verifi-
cation of Dolev-Yao Privacy: Tamarin and ProVerif can do
verification of a bounded number of sessions, but privacy
is only approximated therein. A new approach for verifying
equivalence properties in an unbounded number of sessions was
recently proposed in [56]. Meanwhile, DEEPSEC and Phoebe
handle only a bounded number of sessions, and Phoebe is
also well-typed (i.e., it excludes type-flaw attacks).

All the tools listed thusfar can only specify privacy against
what the intruder know. In turn, Paverd et al., using CASPER,
verified privacy expressed as trace properties against honest-
but-curious attacker (legitimate parties who execute honestly
the protocol but want to gain knowledge about other partici-
pants) [57].

As far as we know, only Phoebe can verify privacy w.r.t. the
knowledge of legitimate parties, as well as precisely express the
anonymity goals of the PrivAuth, (using the list of interlocutors)
as they were originally stated in [23].

Table III summarises the comparison between Phoebe and
some of the aforesaid tools. Figure 7 from [25] compares
DEEPSEC with AKiSs [44], Sat-Equiv [26], APTE [45],
SPEC [46], and DEEPSEC can handle the largest set of privacy
properties, overall, and generally outperforms the other tools
in efficiency (see Figure 7 from [25]). So, in our Table III,
we can safely only compare with DEEPSEC. We reiterate that
DEEPSEC and Phoebe are the only two tools, in Table III,
catering primarily for privacy verification.

Appr.
Indist.

Syverson et al. [37]
axiom.
crypto.

Halpern et al. [11]
semantics
no crypto.

Garcia et al. [38]
semantics

crypto.

Cohen & Dam [20]
semantics + axiom.

crypto.

Baskar et al. [39]
semantics

crypto.

Brusó et al. [3]
semantics
no crypto.

PL
semantics + tool

crypto.

Anonym.
{

Min.
Tot.

X X X X ? N/A X
X X X X ? N/A X

Unlink.
{

Weak
Strong

? N/A ? ? N/A X X
? N/A ? ? N/A X X

Privacy of interloc. ? N/A X X ? N/A X
Vote Privacy ? ? X X X N/A X

TABLE II: PL vs. Epistemic Logic Frameworks for Expressing and Verifying Privacy

Our Notion Tamarin ProVerif DEEPSEC Phoebe

Anonym.
{

Min.
Tot.

XO.A.,I.O.d-e[54]XO.A.,I.O.d-e [53] XI.O. X
? ? ? X

Unlink.
{

Weak
Strong

N/A ? ? X

XO.A.(3p. [7]) XO.A.([2])
XO.A.(3p. [6])

XO.A. [58] X

Privacy of interloc. XO.A.,I.O.d-e XO.A.,I.O.d-e XI.O. X
Vote Privacy XO.A.d-e XO.A.d-e X X

TABLE III: Phoebe vs. Privacy Verification Tools for Proto-
cols (“O.A.” stands for “Over-Approximated”; “N/A” for “not applicable”;
“?” for “never attempted”; “I.O.” for privacy against intruder only; “d.-e.” for
diff-equivalence; “3p” for the 3 conditions for strong unlinkability by [6], [7])

VIII. CONCLUSIONS

We defined an epistemic logic PL, syntactically and seman-
tically, to express and verify privacy properties in cryptographic
protocols, in a Dolev-Yao model. Our logic can express privacy
goals w.r.t an intruder as well as legitimate protocol participants.
Then, PL is a generic logic and expresses uniformly different
flavours and strength privacy properties, from strong/weak
minimal/total anonymity to strong/weak unlinkability. Finally,
PL allows for automation. To this end, we provided a prototype
model checker for PL, named Phoebe. We tested Phoebe
on several use cases, and found expected privacy attacks
on Abadi’s Private Authentication protocol [23], as well as
expected strong unlinkability attacks against the Basic-Hash
protocol [34].

REFERENCES

[1] A. Pfitzmann and M. Hansen, “A terminology for talking about
privacy by data minimization: Anonymity, Unlinkability, Undetectability,
Unobservability, Pseudonymity, and Identity Management,” https://dud.
inf.tu-dresden.de/literatur/, Tech. Rep., 2010.

[2] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan, “Analysing unlinkability
and anonymity using the applied pi calculus,” in 2010 23rd IEEE
computer security foundations Symp., 2010, pp. 107–121.

[3] M. Brusó, K. Chatzikokolakis, S. Etalle, and J. Den Hartog, “Linking
unlinkability,” in Int. Symp. on Trustworthy Global Computing, 2012, pp.
129–144.

[4] S. Delaune and L. Hirschi, “A survey of symbolic methods for establishing
equivalence-based properties in cryptographic protocols,” J. of Logical
and Algebraic Methods in Programming, vol. 87, 2017.

[5] R. Horne, “A bisimilarity congruence for the applied pi-calculus
sufficiently coarse to verify privacy properties,” 2018. [Online]. Available:
https://arxiv.org/abs/1811.02536

[6] L. Hirschi, D. Baelde, and S. Delaune, “A method for unbounded
verification of privacy-type properties,” J. of Computer Security, vol. 27,
no. 3, pp. 277–342, 2019.

[7] D. Baelde, S. Delaune, and S. Moreau, “A method for proving unlink-
ability of stateful protocols,” in 2020 IEEE 33rd Computer Security
Foundations Symp. (CSF), 2020, pp. 169–183.

[8] I. Goriac, “Plausibilistic entropy and anonymity.” J. Wirel. Mob. Networks
Ubiquitous Comput. Dependable Appl., vol. 5, no. 1, pp. 64–83, 2014.

[9] Y. Tsukada, H. Sakurada, K. Mano, and Y. Manabe, “On compositional
reasoning about anonymity and privacy in epistemic logic,” Annals of
Mathematics and Artificial Intelligence, vol. 78, no. 2, pp. 101–129, July
2016.

[10] M. Blaauw, “The epistemic account of privacy,” Episteme, vol. 10, no. 2,
p. 167–177, 2013.

[11] J. Halpern and K. O’Neill, “Anonymity and information hiding in
multiagent systems,” in 16th IEEE Computer Security Foundations
Workshop, July 2003, pp. 75–88.

[12] Y. Tsukada, K. Mano, H. Sakurada, and Y. Kawabe, “Anonymity, privacy,
onymity, and identity: A modal logic approach,” in 2009 Int. Conference
on Computational Science and Engineering, vol. 3. IEEE, 2009, pp.
42–51.

[13] H. L. Jonker and W. Pieters, “Receipt-freeness as a special case of
anonymity in epistemic logic,” in IAVoSS Workshop On Trustworthy
Elections (WOTE 2006), 2006.

[14] J. Hintikka, Knowledge and Belief, An Introduction to the Logic of the
Two Notions. Cornell University Press, 1962.

[15] R. Fagin, J. Halpern, Y. Moses, and M. Vardi, Reasoning about
Knowledge. MIT Press, 1995.

[16] D. Dolev and A. Yao, “On the Security of Public-Key Protocols,” IEEE
Transactionson Information Theory 29, vol. 29, pp. 198–208, 1983.

[17] S. Kripke, “Semantic Analysis of Modal Logic (Abstract),” J. of Symbolic
Logic, vol. 24, pp. 323–324, 1959.

[18] G. Danezis, “Better anonymous communications,” Ph.D. dissertation,
2004.

[19] J. Y. Halpern and R. Pucella, “Modeling Adversaries in a Logic for
Security Protocol Analysis,” in the Workshop on Formal Aspects of
Security (FASec’02), ser. LNCS, vol. 2629, 2002, pp. 115–132.

[20] M. Cohen and M. Dam, “A complete axiomatization of knowledge and
cryptography,” in LICS 2007, 2007, pp. 77–88.

[21] I. Boureanu, P. Kouvaros, and A. Lomuscio, “Verifying security properties
in unbounded multiagent systems,” in the 2016 Int. Conference on
Autonomous Agents & Multiagent Systems, 2016, pp. 1209–1217.

[22] F. Tiplea, L. Vamanu, and C. Varlan, “Reasoning about minimal
anonymity in security protocols,” Future Generation Computer Systems,
vol. 29, no. 3, pp. 828 – 842, 2013.

[23] M. Abadi, “Private authentication,” in Int. Workshop on Privacy Enhanc-
ing Technologies, vol. 2482, 2002, pp. 27–40.

[24] LoRa Alliance Technical Committee, “LoRaWAN Specification
v1.1,” LoRa Alliance, January 2017. [Online]. Available: https:
//lora-alliance.org/resource hub/lorawan-specification-v1-1/

[25] V. Cheval, S. Kremer, and I. Rakotonirina, “DEEPSEC: Deciding
Equivalence Properties in Security Protocols Theory and Practice,” in
2018 IEEE Symp. on Security and Privacy (SP), 2018.

[26] V. Cortier, A. Dallon, and S. Delaune, “Sat-equiv: an efficient tool
for equivalence properties,” in 2017 IEEE 30th Computer Security
Foundations Symposium (CSF). IEEE, 2017, pp. 481–494.

[27] L. Paulson, “The Inductive Approach to Verifying Cryptographic
Protocols,” J. of Computer Security, vol. 6, no. 1-2, pp. 85–128, Jan.
1998.

[28] R. Ramanujam and S. P. Suresh, “Deciding knowledge properties of
security protocols,” in the 10th Int. conference on Theoretical Aspects of
Rationality and Knowledge (TARK’05), 2005, pp. 218–235.

https://dud.inf.tu-dresden.de/literatur/
https://dud.inf.tu-dresden.de/literatur/
https://dud.inf.tu-dresden.de/literatur/
https://dud.inf.tu-dresden.de/literatur/
https://arxiv.org/abs/1811.02536
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/

[29] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov, “Multiset Rewriting
and the Complexity of Bounded Security Protocols,” J. of Computer
Security, 2003.

[30] T. Fábrega, J. Herzog, and J. Guttman, “Strand Spaces: Proving Security
Protocols Correct,” J. of Computer Security, vol. 7, pp. 191–230, 1999.

[31] M. Rusinowitch and M. Turuani, “Protocol Insecurity with Finite Number
of Sessions is NP-complete,” in the 14th IEEE Workshop on Computer
Security Foundations (CSFW’01), 2001, pp. 174–187.

[32] M. Abadi and P. Rogaway, “Reconciling Two Views of Cryptography,” in
Theoretical Computer Science: Exploring New Frontiers of Theoretical
Informatics, ser. LNCS, 2000, pp. 3–22.

[33] D. Basin, “Lazy infinite-state analysis of security protocols,” in Int.
Exhibition and Congress on Network Security, 1999, pp. 30–42.

[34] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels, “Security and
privacy aspects of low-cost radio frequency identification systems,” in
Security in pervasive computing, 2004, pp. 201–212.

[35] K. Budykho, I. Boureanu, S. Wesemeye, F. Rajaona, D. Romero, Lewis,
Y. Rahulan, and S. Schneider, “Fine-Grained Trackability in Protocol
Executions,” in Network and Distributed System Security Symposium
(NDSS) 2023, 2023.

[36] A. Cimatti, M. Gario, and S. Tonetta, “A lazy approach to temporal
epistemic logic model checking,” in AAMAS, 2016, pp. 1218–1226.

[37] P. Syverson and S. Stubblebine, “Group principals and the formalization
of anonymity,” in Formal Methods (FM), Volume I, 1999, pp. 814–833.

[38] F. Garcia, I. Hasuo, W. Pieters, and P. Van Rossum, “Provable Anonymity,”
in FMSE 2005. ACM Press, 2005.

[39] A. Baskar, R. Ramanujam, and S. Suresh, “Knowledge-based modelling
of voting protocols,” in the 11th conference on Theoretical aspects of
rationality and knowledge, 2007, pp. 62–71.

[40] S. Mödersheim and L. Viganò, “Alpha-beta privacy,” ACM Trans. Priv.
Secur., vol. 22, no. 1, pp. 7:1–7:35, 2019.

[41] I. Boureanu, M. Cohen, and A. Lomuscio, “Model Checking Detectability
of Attacks in Multiagent Systems,” in AAAMAS’10, 2010.

[42] J. van Eijck and S.Orzan, “Epistemic verification of anonymity,” Electr.
Notes Theor. Comput. Sci., vol. 168, pp. 159–174, 2007.

[43] I. Boureanu, A. V. Jones, and A. Lomuscio, “Automatic verification of
epistemic specifications under convergent equational theories,” in AAMAS
2012. IFAAMAS, 2012, pp. 1141–1148.

[44] R. Chadha, Ş. Ciobâcă, and S. Kremer, “Automated verification of
equivalence properties of cryptographic protocols,” in Programming
Languages and Systems, 2012, pp. 108–127.

[45] V. Cheval, “APTE: An Algorithm for Proving Trace Equivalence,” in
Tools and Algorithms for the Construction and Analysis of Systems.
Springer Berlin Heidelberg, 2014, pp. 587–592.

[46] A. Tiu, N. Nguyen, and R. Horne, “SPEC: an equivalence checker
for security protocols,” in Programming Languages and Systems: 14th
Asian Symposium, APLAS 2016, Hanoi, Vietnam, November 21-23, 2016,
Proceedings 14. Springer, 2016, pp. 87–95.

[47] R. Horne, S. Mauw, and S. Yurkov, “Compositional analysis of protocol
equivalence in the applied-pi-calculus using quasi-open bisimilarity,”
in Theoretical Aspects of Computing – ICTAC 2021. Springer Int.
Publishing, 2021, pp. 235–255.

[48] M. Abadi and C. Fournet, “Mobile values, New Names, and Secure Com-
munication,” in the 28th ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages (POPL’01), 2001, pp. 104–115.

[49] M. Arapinis, L. I. Mancini, E. Ritter, and M. D. Ryan, “Analysis of
privacy in mobile telephony systems,” Int. J. Inf. Sec., vol. 16, no. 5, pp.
491–523, 2017.

[50] B. Blanchet, “An efficient cryptographic protocol verifier based on
prolog rules,” in the 14th IEEE Workshop on Computer Security
Foundations, ser. CSFW ’01. IEEE Computer Society, 2001, pp. 82–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=872752.873511

[51] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover for
the symbolic analysis of security protocols,” in the 25th Int. Conference
on Computer Aided Verification, ser. CAV 2013. Springer-Verlag, 2013,
pp. 696–701.

[52] S. Escobar, C. Meadows, and J. Meseguer, Maude-NPA: Cryptographic
Protocol Analysis Modulo Equational Properties. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 1–50.

[53] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” The Journal of Logic and
Algebraic Programming, vol. 75, no. 1, pp. 3–51, 2008.

[54] D. Basin, J. Dreier, and R. Sasse, “Automated symbolic proofs of
observational equivalence,” in Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, 2015, pp. 1144–
1155.

[55] S. Santiago, S. Escobar, C. Meadows, and J. Meseguer, “A formal
definition of protocol indistinguishability and its verification using maude-
NPA,” in International Workshop on Security and Trust Management.
Springer, 2014, pp. 162–177.

[56] V. Cheval and I. Rakotonirina, “Indistinguishability beyond diff-
equivalence in proverif,” in 2023 2023 IEEE 36th Computer Security
Foundations Symposium (CSF)(CSF). IEEE Computer Society, 2023,
pp. 552–567.

[57] A. Paverd, A. Martin, and I. Brown, “Modelling and automatically
analysing privacy properties for honest-but-curious adversaries,” Tech.
Rep, 2014.

[58] V. Cheval, C. Jacomme, S. Kremer, and R. Künnemann, “SAPIC+:
protocol verifiers of the world, unite!” in USENIX Security’22, Boston,
MA, Aug. 2022, pp. 3935–3952.

APPENDIX A
PATTERNS OF TERMS

Definition 20 (Patterns of Concrete Terms.) Consider a set T
of concrete terms and a concrete term t ∈ T. The pattern pat
of t at T is a function defined on T such that

pat(t,T) =

{
b, if b ∈ D ∩T

�, if b ∈ D \T
pat((t1, t2),T) = (pat(t1,T), pat(t2,T))

pat(pubk(t),T) = pubk(pat(t,T))

pat(seck(t),T) = seck(pat(t,T))

pat({t}pubk(a),T) =

{
{pat(t)}pubk(a), if seck(a) ∈ T

�, if seck(a) 6∈ T

pat({|t|}k,T) =

{
{pat(t)}k, if k ∈ T

�, if k /∈ T

pat(hash(t),T) =

{
hash(pat(t)), if t ∈ T

�, if t /∈ T

The patterns pat(T) of a set T of concrete terms is given
as pat(T) = {pat(t, analz (T)) | t ∈ analz (T)}.

APPENDIX B
SPECIFYING THE BASIC-HASH PROTOCOL [34]

Now, we show an alternative modelling of the Basic-Hash
protocol [34] in our formalism.

Example 9 To make the lookup fail more explicit in the
Basic-Hash protocol (Example 8), one can model the receiving
agent to do separately the receive action and the lookup action,
instead of a single post-conditioned receive action. In that case,
the role of the reader would contain the following actions

1.R ? : 〈NT, hash(〈NT,KT 〉)〉,
2.R ! : test(φlookup) ok
|R ! : test(¬φlookup) error,

where φlookup is the formula
∃x : DK · x ∈ SR ∧ linkR(hash〈NT,KT 〉, hash〈NT, x〉), and
where ok and test are constant strings.

http://dl.acm.org/citation.cfm?id=872752.873511

APPENDIX C
VERIFYING THE TAG-READER PROTOCOL [6] IN PHOEBE

Another use-case is the a tag-reader (TR) protocol (Example
17 in [6]). This is as follows. A tag T first sends the encryption
of a fresh nonce NT with the shared key KT. Upon receiving
{NT}_KT, a reader also sends the encryption of its fresh nonce
NR with the same shared key KT. The tag accepts {NR}_KT
only if NR is not a term that it already has, after which it sends
the encryption of the pair 〈NR,NT〉. The reader accepts the
second encryption message if it matches its expected message.

The TR Protocol in Phoebe: For TagReader0, we
verified the properties (strong) “unlinkability by name” and
“unlinkability by key”, i.e., our properties 5 and 6 in VI-B. We
allowed names ti to play only the tag’s role, and names ri to
play only the reader’s role. We report the results in Table I with
two sessions and, two tag names {t1, t2} such that t1 and
t2 may have the same or different keys from {k1, k2}.

Results: For this protocol, Phoebe found no attack on
“strong unlinkability by name”, for all the tests. [6] informally
discussed the fact that this protocol might be exploited by the
intruder to track of a group of tags using the same key. We
formally defined this property as “unlinkability by key” in
Section V. As expected, attacks were found on “unlinkability
by key” for TagReader0.

APPENDIX D
VERIFYING LORAWAN JOIN V1.1 [24] IN PHOEBE

We now present the LoRaWAN Join and a summary of its
verification in Phoebe.

1) The LoRaWAN Join: LoRaWAN in the most used IoT
specification. When LoRAWAN devices join an IoT network,
they run the protocol in Figure 1, i.e., the LoRaWAN Join v1.1
protocol [24]. We describe it here succinctly (due to space
constraints), but sufficiently for privacy concerns.

End Device
(ED)

Network Server
(NS)

Join Server
(JS)

Application Server
(AS)

1. JoinRequest: JoinEUI,
DevEUI, DevNonce,
mac((JoinEUI, DevEUI,
DevNonce);NwkKey)

generate DevAddr;

2. JoinReqFwd

generate JoinNonce;
generate AppSKey

3. JoinAns: JoinAccept

generate AppSKey

4. JoinAccept: enc((DevAddr,
..., JoinNonce), NwkKey)

5. DevAddr, enc(data;AppSKey) 6. DevEUI, DevAddr, enc(data;AppSKey)

Fig. 1: LoRaWAN Join v1.16

In this protocol, an End Device (ED) with a long-term
identifier DevEUI contacts a Join Server (JS) via a Network
Server (NS), such that the ED establishes a new session key,
AppSKey, to use with an Application Server (AS).

6Dashes vs lines: secure vs insecure channels; dots: down to implementer

In this process, the NS generates an ephemeral identifier,
DevAddr, for the device, which the device will use in all the
headers of its application messages until it rejoins (e.g., days
or weeks later).

2) LoRaWAN-Join’s Privacy Provision.: Figure 1 shows
which messages are encrypted and which are not, and we
see that the long-term identifier DevEUI appears in clear in
message 1. We also see the in message 6, on the “backend”
between the NS and the AS, the DevEUI and the DevAddr
appear jointly.

Privacy question: Assuming that the attacker does not have
access to the backend, i.e., not to message 6, is the attacker
able to link a DevEUI to its assigned DevAddr?

This requirement can be expressed in PL as follows.

¬(∃x : DA,y : DK, ag : Ag ·KI(playsag(ED)∧
linkag(DevEUI, x) ∧ linkag(DevAddr, y)))

We model LoRaWAN Join in Phoebe, as one would expect
from the description above and our formalism.

We verified this is Phoebe and we report that in Table I.
Note 6: LoRaWAN Join v1.1 protocol [24] was not specified

with the privacy in mind, but this attack was recently discussed
in [35], and now this is current topic of interest for the upcom-
ing v1.2. specifications (see https://resources.lora-alliance.org/,
talks at Expo 2022).

APPENDIX E
LIST OF SYMBOLS

Below, we provide a non-exhaustive list of the symbols used
in this work and their meaning to help the reader.

Terms
Abstract terms Concrete terms

Names A,B,C, T,R, . . . (∈ A) alice, bob, t1, t2, . . . (∈ DA)
Nonces NA, NB , . . . (∈ N) n, na, nb, . . . (∈ DN)
List SA, SB , . . . (∈ S) {pubk(bob)}, {k1, k2}, . . .
Shared key KAB ,KT , . . . (∈ K) kab, k, . . . (∈ DK)
Generic τ ∈ T (F ,V) t ∈ T (F , D)

Protocol Model
V protocol variables A ∪N ∪ K
F functional symbols (= Fc ∪ Fd)
F0 public constants
F∗c public constructor symbols
Vτ a subset of V
T,M set of concrete terms (knowledge-set)
F frame
D domain of concrete terms DN ∪ DA ∪ DK
σ a substitution, i.e., in V → T (F , D)
Σ a (finite) set of substitutions
ag an agent (representing a session of a participant)
s a global state of the system
sag local state of agent ag

Logic Syntax

x, y, z logic variables
θ logic term T (F , D ∪ X)

Logic Semantics

α an assignment of logic variables
V α valuation of logic terms under α
M = (W, {∼ag}ag∈Ag) an epistemic model
W a set of global states (possible-worlds)
∼ag indistinguishability relation of agent ag

https://resources.lora-alliance.org/

	Introduction
	A Running Example
	Privacy-centred Protocol Model
	Protocol Algebra
	Equational Theory

	Protocol Actions and Roles
	``Simple'' Actions
	Branching Actions
	Protocol Roles & Protocols

	Substitutions
	Our Protocol Model: Privacy Systems (PS)
	Agents of a PS
	States of a PS
	Deductions on PS Local States
	State-Updates in a PS
	Executions
	States Indistinguishability

	Epistemic Logic for Protocols' Privacy
	Privacy Logic PL – Syntax
	Privacy Logics PL – Semantics
	Informal Meaning of Formulas in PL
	Equality in PL via link
	PL's Indexing over Agents & Names

	Encoding Privacy in PL
	Anonymity
	Privacy of Interlocutors.
	Unlinkability

	Mechanised Privacy Analysis
	Overview of Our Model Checker Phoebe
	Verifying Privacy & Unlinkability in Phoebe
	Privacy Verification for PrivAuth
	Unlinkability Analysis for the Basic-Hash Protocol
	Further Case Studies

	Limitations of Our Method and Phoebe

	Related Work
	Conclusions
	References
	Appendix A: Patterns of terms
	Appendix B: Specifying the Basic-Hash Protocol weis2004security
	Appendix C: Verifying the Tag-Reader Protocol hirschi2019 in Phoebe
	Appendix D: Verifying LoRaWAN Join v1.1 lora11 in Phoebe
	The LoRaWAN Join
	LoRaWAN-Join's Privacy Provision.

	Appendix E: List of symbols

