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Abstract—We systematically scrutinise all the facets of pri-
vacy in the 5G delegated-authentication procedure called
AKMA (Authentication and Key Management for Applica-
tions based on 3GPP credentials in the 5G Systems). We
define, in general terms, a privacy-threat model and privacy
requirements for this protocol. Using these definitions, we
find numerous privacy failings in the AKMA protocol. We
propose a patch, called AKMA𝑝 , which imposes minimal
changes on AKMA, yet it attains all our privacy require-
ments. We also formalise and analyse all of this in terms of
formal privacy-verification in the Dolev-Yao model; to this
end, we use the Tamarin prover to systematically carried
out our formal analyses of AKMA and AKMA𝑝 .

1. Introduction

Modern access-control platforms, drawing inspiration
from Federated Identity Management (FIM) paradigms,
such as OAuth and Single Sign On [14], expand users’ au-
thentication across several third parties.. One such system
is the new Authentication and Key Management for Ap-
plications based on 3GPP credentials in the 5G Systems,
AKMA for short [6]. Indeed, in the 5G (5th Generation)
mobile networks, this AKMA procedure was added, to
allow for delegated authentication from the network to
third-party providers called application functions (AFs).
For instance, using AKMA, a driver inside a connected
car securely employs a proprietary system (i.e., an AKMA
AF) to pay for road services and tolls automatically,
without needing to authenticate in any other way to any
of these third-party systems/AFs but by sheer virtue of
their car including a SIM-card (Subscriber Identification
Module) registered onto a mobile network. For this, the
third-parties/AFs will have provisioned AKMA with the
mobile operator, and it is the AKMA protocol that the
SIM will use when accessing different third-party services.
Moreover, as we said, the owners of AKMA-capable
devices, be it phones or cars, may not even know that
their device is connecting to such a third-party service/AF
using their SIM/mobile-network credentials. Importantly,
the user’s privacy can be severely impacted by these
connections: e.g., their connection to a given third-party
service or the time of it, or their location, their mobile-
network provider, all may leak. Finally, the privacy aspects
in AKMA also go the other way: a third-party, AKMA-
functionality provider/AF may not wish to be linked to
a given set of users or connected to other providers/AFs
who also serve AKMA traffic to those users.

Importantly, AKMA is a procedure undergoing stan-
dardisation by 3GPP, with the technical specifications
(TS) [6] changing constantly in the last two years, and
even very recently, i.e., September 2024, with high like-

lihood for full adoption in future iterations of the mobile-
networks’ revisions and generations. Privacy is not yet
included as a requirement in these TS, but it is being
discussed and addressed, as even the non-specialist reader
can observe from the last two years’ iterations of the
specifications [6].

Modified Versions of AKMA. Recently, there has
been also an academic endeavour [7] into privacy-centric
enhancements of AKMA. Firstly, whilst the proposal
in [7] does indeed improve the privacy standing of the
AKMA protocol, the work takes certain standpoints that
are in conflict with 3GPP’s views on AKMA, and more
widely they violate certain principles of (the 5G) mobile
networks. For instance, the privacy enhancements in [7]
break the following core design principle of AKMA: “the
AKMA AF shall be able to identify the AAnF serving the
UE from the A-KID” (see the AKMA specification [6]).
Similarly, in their new design, the UEs employ public keys
of the core, when the AKMA specification only allows
symmetric cryptography therein. Secondly, the line in [7]
considers that the so-called 𝑈𝑎∗-channels between the UE
and the AF is always to be insecure; not only does this
leads to trivial privacy failing, but it is again at odds with
the AKMA specification [6] which clearly stipulates that
𝑈𝑎∗-channels are often secure. To this end, one natural
question left to the study is: “If a UE has an insecure
𝑈𝑎∗-channel with one AF and a secure one with another
AF, is privacy compromised in relation with the latter AF,
or just the former AF?” Lastly, whilst the work in [7]
contains formal verification, it does not clearly formulate
the privacy properties demanded of the UE, of the AF, or
of the two, not outside of the verification tool.

In the context of formal verification, there are a couple
of works, i.e., [8], [25], that formally verify AKMA in
tools like ProVerif and Tamarin respectively, but focus on
security properties, not on privacy; so, their results (be it
in new designs, or in verification) are therefore orthogonal
to ours1.

Our Pursuit & Contributions. In contrast with prior
lines [7], our work is centred in and around formally
proven privacy-enhancements of AKMA, such that:
(a) it is standardisation-friendly and, in any new proposi-
tions of AKMA enhancement, does not deviate from the
design principles of AKMA or those of 5G networks, and
we have been working with 3GPP towards this;
(b) for the first time, we give formal definitions of the pri-
vacy and unlinkability requirements of AKMA which are
generic, such that any verification tool, be it symbolic [15]
or computational [22], can take these definitions and cast
them in a specific language;

1. We discuss all these works, on privacy and on security, in more
detail in our “Related Work” section.



(c) we prove privacy lacks in AKMA and prove privacy
preservation in our AKMA-patch using known results
in formal verification [11] and translating our generic
unlinkability definitions into symbolic verification models
and tools, in systematic and tractable ways.

Whilst our contribution (c) is only of theoretical in-
terest, contributions (a) and (b) walk the tight rope drawn
of improving existing designs, systematically, but doing
so with practical constraints and backwards compatibility
in mind all the while giving provable guarantees of the
improvement.

2. Background

2.1. A Glance on (5G) Mobile Networks

In Figure 1 and below, we first give a simplified
overview of the relevant 5G network entities for AKMA:

1) the User Equipment (UE) – a device (e.g., phone, car
with a SIM onboard) subscribed to a mobile service;

2) the Radio Access Network (RAN) – the 5G radio
“towers” providing network connectivity to the UEs;

3) the 5G core [3], [4] – servers implementing the oper-
ator’s logic, split into services: e.g., the Authentica-
tion Server Function (AUSF) and the Access and Mo-
bility Management Function (AMF) authenticate the
UE via a protocol called the 5G Registration / AKA
(Authentication and Key Agreement); the Network
Exposure Function (NEF) is an API-based proxy for
5G to allow third-party applications’ queries; e.g.,
some of these calls go to the core via the Applications
(AKMA) Anchor Function (AANF);

4) the Data Network (DN) – largely, the Internet;
5) the User Plane Function (UPF) – largely, gateways

routing the UE onto the radio and data networks;
6) Application Functions (AFs) – 3rd-party application-

servers leveraging, e.g., the network’s authentication.

Figure 1: Simplistic Overview of 5G for Non-specialists
(see [3], [4] for details)

2.2. AKMA & Its Privacy-Relevant Aspects

We now present the AKMA protocol. We give it dia-
grammatically in Figure 2, where we emphasise privacy-
centric aspects in blue, as well as via Notes 1-4 to follow.

2.2.1. AKMA – An Overview. AKMA [6] is a dele-
gated authentication service in 5G mobile networks. It
aims to extend a subscriber’s authentication onto the 5G
network further into applications outside the network. In
this way, an application-function (AF) server identifies a
subscriber’s UE indirectly, mediated by the core – who, in
fact, authenticates the UE. After this proxied authentica-
tion, the UE and the application function (AF) server will
(re)establish a channel, secured with a key called 𝐾𝐴𝐹
(application function key).

2.2.2. The AKMA Protocol. The AKMA protocol is
succinctly represented here, in Figure 2, and explained
further now. The AKMA protocol can be seen as executing
in two phases, which we denote as follows: the “initial
phase” of AKMA shown on the left of Figure 2, and the
“𝐾𝐴𝐹-key generation” phase of AKMA given on the right
of Figure 2. The two phases are generally not executed
in immediate sequence; also, there is not a one-to-one
mapping between them: i.e., for the same UE, there can be
several runs of the “initial phase” of AKMA and just one
run of the “𝐾𝐴𝐹-key generation” phase, and vice versa.

For the purposes of this work, we can consider that the
AKMA protocol is executed between a UE, an AF, and
simply the core2, e.g., the Application Anchor Function
(AAnF).

We proceed in describing these phases.
The “Initial Phase” of AKMA. As per points

3.a and 3.b on Figure 2, the end of 5G authentication
(i.e., Registration/AKA [2]), an AKMA-ready UE3 and the
AAnF will both hold a new 𝐾𝐴𝐾𝑀𝐴 key for all AFs that
the UE may connect to, and index this key under a so-
called AKMA Key Identifier (AKID) (or A-KID, as both
terms are used interchangeably in the specifications [6]).

Note 1: In the current AKMA specifications [6], a UE
has one single AKID to identify itself in front of all AFs
serving it. I.e., one UE uses same AKID to connect to any
number of different AFs.

The Derivations for AKID, 𝐾𝐴𝐾𝑀𝐴 and 𝐾𝐴𝐹 .
The AKID is an identifier formed of a part containing
routing information about the user-equipment (denoted
below as “ue routing info”) and a cryptographically de-
rived identifier called “A-TID (AKMA Temporary UE
Identifier)” in AKMA’s 3GPP specifications [6]. Such an
AKID is a pointer to an associated 𝐾𝐴𝐾𝑀𝐴 key in the
core’s database. These derivations are described in the
Equations (1) to (4) below.

Based on the 𝐾𝐴𝐾𝑀𝐴 key, the UE and each AF
associated with the newly derived AKID can derive a new
𝐾𝐴𝐹 key. In more detail, the key derivations relevant to
the AKMA protocol are as follows:

𝐴-𝑇 𝐼𝐷 = 𝐾𝐷𝐹 (𝑐𝑜𝑛𝑠𝑡, 𝐾𝐴𝑈𝑆𝐹 , “𝐴𝑇𝐼𝐷”, SUPI); (1)
𝐴𝐾𝐼𝐷 = 𝑢𝑒 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 𝑓 𝑜 | | 𝐴-𝑇 𝐼𝐷 (2)
𝐾𝐴𝐾𝑀𝐴 = 𝐾𝐷𝐹 (𝑐𝑜𝑛𝑠𝑡, 𝐾𝐴𝑈𝑆𝐹 , “𝐴𝐾𝑀𝐴”, SUPI) (3)
𝐾𝐴𝐹 = 𝐾𝐷𝐹 (𝑐𝑜𝑛𝑠𝑡, 𝐾𝐴𝐾𝑀𝐴, 𝐴𝐹 𝐼𝐷), (4)

whereby: 𝐾𝐷𝐹 is a hash, 𝑐𝑜𝑛𝑠𝑡 symbolises constants,
SUPI (Subscription Permanent Identifier (SUPI) is a long-
term identifier of the UE described in [1], and 𝐴𝐹 𝐼𝐷

is constructed as 𝐴𝐹 𝐼𝐷 = 𝐴𝐹 𝑞𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑 𝑛𝑎𝑚𝑒 | |𝑈𝑎∗
with 𝑈𝑎∗ being the identifier4 of the protocol used at the
application level between the UE and an application server
associated with an AKMA Application Function (AF).

2. It is run between the AF and the AAnF – if the AF is internal to the
operator, and between the AF, the AAnF (Application Anchor Function)
and the NEF (network exposure function) – if the AF is external to the
operator.

3. This readiness is something users buy as part of their mobile-phone
contracts, or when they purchase a modern car with a SIM onboard, etc.

4. This is specified in Annex H of 3GPP 33.220 TS [5].



The “𝐾𝐴𝐹-key Generation” of AKMA, with
focus on exchanges of privacy-relevant identifiers.
We now describe the second phase of AKMA, shown in
Figure 2, and we focus on the privacy-relevant identifiers
exchanges at various points in the protocol.

In line with AKMA specifications [6], we refer to the
channel on which UEs communicate with AFs as the 𝑈𝑎∗
protocol, the 𝑈𝑎∗ channel, or the 𝑈𝑎∗ connection. This is
set up by the AF, when the AKMA service is provisioned.

Note 2: According to Annex H of 3GPP 33.220 TS
[5] where the 𝑈𝑎∗ protocol is specified, the 𝑈𝑎∗ protocol
can be a secure (e.g., HTTPS) or an insecure protocol
(e.g., HTTP).

1) In step 1, the UE sends its current, global AKID to
one AF with whom it intends to communicate; this
is done over the 𝑈𝑎∗ protocol that the UE and this
AF are set up to use.

2) In step 2, since the AKID identifies the network
associated with it, then the AF at hand sends the
received AKID to the right AAnF, alongside with its
own identifier 𝐴𝐹 𝐼𝐷.
In line with the specifications [6], this is done over
a secure channel between the AF and the AAnF.

3) In steps 3-6, the AAnF gets the long-term network
identifiers (SUPI, GPSI) from the part of the core
holding this (i.e., the UDM). Also, the AAnF checks
that the contacting AF can provide the service to the
UE linked to the AKID, based on the subscriber’s
information.

4) If the above steps are successful, then a new 𝐾
𝐴𝐹

key is generated in step 7.
5) Then, in step 8, this new 𝐾

𝐴𝐹
key, its time-to-live

(TTL), and a long-term identifier of the UE (i.e., the
SUPI or the more generic GPSI) are sent5 by the
AAnF to the AF.
The UE does the same 𝐾

𝐴𝐹
key-computation, on its

side.

Note 3: The SUPI/GPSI, unlike the AKID, is a long-
term identifier. Since the AKID is ephemeral (i.e., it
changes with every re-Registration of the UE), the
AFs need to receive the SUPI/GPSI, e.g., to book-
keep data across sessions of the same UE. However,
the SUPI/GPSI is also a network-wide identifier, not
specific to AKMA; nonetheless, all, third-party AFs
serving one UE will receive their SUPI/GPSI. So, in
AKMA, multiple AFs hold long-term, network-wide
identification information of the same UE.

6) In step 9, the AF replies to the UE, to say if the
AKMA-session establishment requested in step 1 was
successful or not, including the potential reason of
failure; reasons for failures are transmitted by the
core to the AF in step 8, should it occur.

Note 4: The last Ua* message in AKMA key-
establishment (i.e., step 9 above/in Figure 2) contains
discriminating details, such as the reasons of suc-

5. The SUPI is sent to the AF if the AF is found inside the Core
network, while the GPSI is sent when the AF is outside it.

cess/failure of an UE/AKID attempting to connect to
an AF/AF ID.

7) After step 9, provided the UE and the AF deem the
process as successful at both ends, all communication
between the UE and this AF is encrypted from then
on with this 𝐾

𝐴𝐹
inside the 𝑈𝑎∗ protocol.

8) If, for whichever reason, the AF requires a new 𝐾
𝐴𝐹

key (i.e., because its TTL has expired, or the 𝑈𝑎∗
protocol demands it via its tickets, etc.), then the AF
will contact the AAnF, and this phase is re-run from
step 2 onwards.

3. Execution & Threat Models

Our execution and threat models follow a common-
place description of protocol executions, for sake of being
generic. That is, for now, we omit any protocol measures
be it computational, or Dolev-Yao [15].

Our Execution Model & Environment E.. We
assume the following settings. The AKMA protocol has
several concurrent executions, successful as well as un-
successful over various AF, UE, and core entities (e.g.,
𝐴𝐹1, 𝐴𝐹2, . . ., 𝑈𝐸1,𝑈𝐸2, . . ., 𝑐𝑜𝑟𝑒1, 𝑐𝑜𝑟𝑒2, . . . ,). The lat-
ter entities are denoted parties and have been enrolled in
the system such as to have all the cryptographic material
and knowledge to execute the AKMA protocol.

A party engaging once in an AKMA execution de-
scribes an instance of that party. In the enrolment or
provisioning6 phase, channels between parties are created,
emulating that the instances of different party7 types (AF,
UE, and core) can communicate with one other, with
incoming and outgoing messages, as per the AKMA pro-
tocol; we speak of the channels on which the𝑈𝑎∗ protocol
is run as the 𝑈𝑎∗ channels.

Each party can have several concurrent instances run-
ning at any given point. The interleaving of at least three
instances of an AF, a UE and a core party respectively,
creating an execution of the AKMA protocol is denoted
as an AKMA-protocol session. A session can be partial –
if not all the instances involved in it have reached the final
step in AKMA, or –otherwise, it is said to be complete.

We consider an AKMA execution environment E in
which several parties of each type (AF, UE, and core) are
involved, several instances of each party are present, and
several partial and complete sessions are under way.

Our Threat Model T . This is defined as follows:
T1) an AKMA execution environment E, as described

above;
T2) the presence of an active adversary A who can

corrupt AF and UE parties from the enrolment phase
or during the protocol execution;

T3) a party compromised at enrolment phase will be
totally controlled by the adversary, including the
attacker controlling all its long-term cryptographic

6. This is when a third-party such as a car manufacturer partners with
an operator to provide AKMA to some of its subscribers.

7. Any AKMA-capable device on the UE-side, be it phone, car, etc., is
a party of type UE. Operators such as Orange, Vodafone, Telefonica, are
parties of type core. Third-party AKMA providers, say BMW, YouTube,
etc., are parties of type AF.
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Figure 2: AKMA. Left – 𝐴𝐾𝐼𝐷 generation as per Fig.6.1-1 [6]. Right – 𝐾𝐴𝐹 generation as per Fig.6.2-1 [6]); messages
detailed by us, above. Privacy aspects added by us, in blue

material, which need not be the case for a party
compromised during the protocol execution;

T4) trusted cores, meaning that the attacker cannot cor-
rupt any party of type core;

T5) corrupted parties will not follow the AKMA protocol;
T6) honest parties follow the AKMA protocol;
T7) upon corruption, the attacker is subsumed by itself

together with all the parties it has corrupted, and
excluding any honest parties;

T8) as per usual, if AKMA is studied against a privacy
notion underpinning one party 𝑃1, then this party 𝑃1
cannot be corrupt;

T9) as per usual, if AKMA is studied against a privacy
notion underpinning collectively a certain 𝑈𝐸𝑖 and a
certain 𝐴𝐹𝑗 , then not both parties 𝑈𝐸𝑖 and 𝐴𝐹𝑗 can
be corrupt;

T10) the channels between the core and the AFs remain
secure, ensuring authenticity, confidentiality and in-
tegrity. I.e., our corruption of an AF is not at the
level where it can defeat the authentication on the
channels with the core8;

T11) the active adversary can listen on all channels, at
the security-level of the channel (as per specified
in AKMA) compound with his corruptions. I.e., if
the UE-to-AF channel is secure and the end-points
of the channel are not corrupt, the attacker cannot
defeat the security of the channel; the UE-to-core
communication can be compromised, if the UE is
compromised; the AF-core channels remain secure.

Security Settings S. We consider the following
security settings denoted, as a whole, by S:
S1) All the privacy properties we study are from the

8. Arguably, this is realistic. If corrupted AFs can create fake certifi-
cates to connect to the core impersonating other, honest AFs and thus
breaking the security of these channels, then this is a security flaw w.r.t.
the (public-key) infrastructure in general, defeating entire sets of security
procedures relying on it, not just AKMA. If this fails, then all security
assumptions and procedures by 3GPP [1], are futile ab initio.

perspective of our attacker, i.e., from the perspective
of corrupted parties and not honest parties.

S2) For any privacy property that we study with respect to
the 𝑈𝐸 , we consider the 𝑈𝑎∗-channel between 𝑈𝐸𝑖
and a party 𝐴𝐹𝑗 be secure (i.e., ensuring authenticity,
integrity, and confidentiality), since the privacy of the
𝑈𝐸 is trivially broken when this channel is insecure.
Whilst we are interested in studying privacy primar-
ily on a secure 𝑈𝑎∗-connection say between 𝑈𝐸 𝑗
and 𝐴𝐹𝑖 , we do allow that other 𝑈𝑎∗-connections,
say, e.g., between 𝑈𝐸𝑖 and 𝐴𝐹𝑘 , be insecure. This
is exactly in line with the possibilities implied by
the 3GPP specifications. Notably, (i) there may be
privacy attacks which occur because the insecurity of
one 𝑈𝑎∗-channel leads to a privacy-attack on another
𝑈𝑎∗-channel even if the latter was secure; and, (ii)
there may be privacy attacks which occur even if all
𝑈𝑎∗-channel are secure.

4. Privacy Notions for AKMA

There are two identifiable AKMA parties: the users
and the application servers/functions. From the viewpoint
of all their AKMA identifiers we proceed to define privacy
notions, in our threat model.

4.1. UE-focused, AKID-based Privacy in AKMA

Firstly, recall from Section 2 that the UE is identified
in AKMA via the so-called AKID, as Section 6.2.2 of the
AKMA specifications [6] say:

“The AKID functions as a temporary user identifier.” [6], p. 16

In Section 2.2.2, in more detail, we saw that
the AKID contains the so-called ATID and some
“𝑢𝑒 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 𝑓 𝑜”. The latter contains static informa-
tion, which can be inverted, i.e., linked backed to a UE by
any party that can corrupt the core; however, in our threat



model, the core is trusted (see (T4) in Section 3). Also, this
𝑢𝑒 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 𝑓 𝑜 is a 4-digit number, which is not nec-
essarily UE-specific. Finally, one given 𝑢𝑒 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 𝑓 𝑜

will be the same outside of the AKMA protocol, so this
is not an AKMA-centric identifier; as such, looking at
privacy via the lens of the 𝑢𝑒 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 𝑓 𝑜 is not of
interest. The latter part of the AKID (i.e., the ATID),
however, is cryptographically re-generated per UE, with
every Registration and it is used to identify the UE by
parts of the network (i.e., the AF) which we do consider
corruptible (see (T2) in Section 3). So , w.r.t. any privacy
linked to AKID, we will in fact be interested in privacy
analysis w.r.t. the A-TID, and henceforth, we use “AKID”
to mean “A-TID” for purposes of privacy analysis.

4.1.1. What privacy notions. AKIDs, as AKMA-specific
identifiers, are ephemeral: i.e., as Section 2.2.2 explained,
each of these are re-generated with every Registration
(see left-hand side of Figure 2), as Section 6.1 of the
AKMA specifications [6] say:

“AKID can only be refreshed by a new ... authentication”, [6], p. 14

So, we are interested in strong forms of privacy, such
as tracking UEs based on ephemeral identifiers:
Definition 1. Strong Secrecy of the UE’s AKID in

AKMA. In the threat model T , under the security
assumptions S, strong secrecy of UE’s AKID (SS UE-
AKID) holds if:
• for any attacker A in the settings T ,S, spanning any

AKMA execution environment E such that A does
not know9 (now) the active AKID of an honest UE,
the attacker A cannot follow (future) presences of
this AKID within secure 𝑈𝑎∗ connections within E.

In the spirit of our earlier setting (S2) and/or Note 2 in
Section 3, Definition 1 focuses on secure 𝑈𝑎∗ connections
(as opposed to any 𝑈𝑎∗ connections); it can be seen as
asking: if AKIDs remain secret, do secure channels imply
that one cannot track, observe, link-together the executions
of an AKID (maybe based on a some protocol data linking
to specific AKIDs)?

Now, we move to a different notion of privacy, which
we call “post-compromise privacy”; see Definition 2.

Definition 2. Post-Compromise Privacy of UE’s AKID
in AKMA. In the threat model T , under the secu-
rity assumptions S, post-compromise privacy of UE’s
AKID (PP UE-AKID) holds if:
• for any attacker A in the settings of T and S,

spanning any AKMA execution environment E such
that A knows that an AKID of an honest UE was
present in the execution environment E, the attacker
A cannot follow future presences of this AKID
within secure 𝑈𝑎∗ connections within E.

Definition 2 is also in the spirit of our earlier setting
(S2) and/or Note 2 in Section 3, i.e., AKIDs’ privacy
studied on secure 𝑈𝑎∗ channels yet bearing in mind that
insecure 𝑈𝑎∗ channels exist, but also with a strong focus

9. Here, knowing an AKID is equivalent to knowing that this AKID
was/is present in the execution environment E.

on Note 1 (i.e., the fact that the AKID is not AF-specific).
And, more intuitively, PP UE-AKID asks whether secure
𝑈𝑎∗ channels in AKMA can help re-gain or repair AKID-
based privacy potentially lost due to certain insecure 𝑈𝑎∗
channels. Since one AKID is the same for all AFs (see
Note 1 in Section 2.2), each AF having with their own
𝑈𝑎∗-security provision, the question in Def. 2 is pertinent.
In other words, is the co-existence of secure and insecure
𝑈𝑎∗ channels across various AFs in AKMA fatal to the
privacy of “global” AKIDs? Once an AKID leaks (e.g.,
on an insecure channel), can we track this AKID forever,
for instance due to (revealing) message in AKMA?

More formally, the AKMA protocol would provide
PP UE if no attacker were able to tell that a leaked AKID
will be present on secure 𝑈𝑎∗ channels/protocols, after the
leak. This leakage could occur, e.g., as follows: (a) due
to the fact that the 𝑈𝑎∗ protocol can be insecure between
one honest UE and one honest 𝐴𝐹1; (b) due to the attacker
having corrupted one single AF and thus getting honest
AKIDs anyway, etc., which may connect to other AFs
(since AKIDs are AF-agnostic – see Note 1).

4.2. Privacy of AKMA’s Application-Functions

We now move to privacy properties pertaining to the
application functions (AFs) and their identifiers – the
AF IDs. We propose one privacy notion, in Definition 3:

Definition 3. Weak Privacy of the AF in AKMA. In
the threat model T , under the security assumptions S,
weak privacy of the AF (WP AF) holds if:
• any attacker A in the settings of T ,S, spanning any

AKMA execution environment E, cannot detect the
presence of an AF ID pertaining to an honest AF,
within the execution environment E.

Definition 3 says that weak privacy of the AF
(WP AF) holds if no attacker, in our model, is able to
learn, by executing AKMA, if one AF or another is present
onto a network.

4.3. Unlinkability of UE-AKIDs and AFs

We move to describing the notions of whether an
attacker can find a link between a given UE and a given
AF, or vice versa, in the case where the two are honest and
are communicating securely. Intuitively, asking around
such linking makes sense due to a number of reasons.
For instance, corruptions of the UEs vs. the AFs lead to
different observability levels, since the AKID is global
to all AFs, and a legitimate AF may serve one AKID
but not another. Also, recall our Note 4 in Section 2,
whereby various codes for successes or failures of the
(re-)establishment of 𝐾𝐴𝐹 are sent on the 𝑈𝑎∗ channel
to every UE, thus leaking their status w.r.t. connections to
AFs.

Definition 4. Unlinkability of UE-AKIDs and AFs in
AKMA (on the Ua* Channel). In the threat model
T , under the security assumptions S, unlinkability of
UE-AKIDs and AFs (L AKID-AF) holds if
• any attacker A in the settings of T ,S, spanning

any AKMA execution environment E, cannot detect



Table 1: Our Privacy Notions for AKMA
Property About Meaning Setting
strong secrecy of UE’s AKID
(SS UE-AKID Def. 1) AKID Can A track AKIDs, if AKIDs’ confidentiality holds? secure 𝑈𝑎∗ channels,

secure core-AF channels
post-compromise privacy of UE’s AKID
(PP UE-AKID, Def. 2) AKID Can A track an AKID even when only sent encrypted,

once this AKID’s confidentiality was breached?
secure & insecure 𝑈𝑎∗ channels,
secure core-AF channels

weak privacy of the AF
(WP AF, Def. 3) AF ID Can A track AF IDs even if all channels are secure? secure & insecure 𝑈𝑎∗ channels,

secure core-AF channels
unlinkability of UE-AKIDs and AFs
(L AKID-AF, Def. 4) AKID and AF ID A mix of PP UE and SP AF: i.e., Can A link together an AKID

and an AF ID as communicating?
secure & insecure 𝑈𝑎∗ channels,
secure core-AF channels

unlinkability of UE-SUPIs and AFs
(L SUPI-AF, Def. 5) SUPI/GPSI and AF ID Can A link together a SUPI/GPSI

and an AF ID as having been in contact?
no relation to Ua* channels
secure core-AF channels

if an honest UE identified via their current AKID
is communicating with an honest AF, within secure
𝑈𝑎∗ connections within E.

Specifically, this linkability can occur in two “direc-
tions”, from the UE to the AF, or vice versa:

(a) In the threat model T , under the security
assumptions S, unlinkability of UE-AKIDs to AFs
(∃𝑈𝐸 − 𝐴𝐾𝐼𝐷 → ∀ 𝐴𝐹) holds if:
any attacker A in the settings of T ,S, spanning any
AKMA execution environment E, targeting a given
honest UE cannot tell this UE is communicating with
a specific honest AF, within secure 𝑈𝑎∗ connections
within E.

(b) In the threat model T , under the security assump-
tions S, unlinkability of AFs to UE-AKIDs (∃ 𝐴𝐹 →
∀𝑈𝐸 − 𝐴𝐾𝐼𝐷) holds if:
any attacker A in the settings of T ,S, spanning any
AKMA execution environment E, targeting a given
honest AF cannot tell this AF is communicating with
a specific honest UE, within secure 𝑈𝑎∗ connections
within E.

Part (a) of Definition 4 ask this: given an AKID, is
there a specific AF (i.e., AF ID) we can link them to?
Part (b) then asks: given an AF (i.e., an AF ID), is there
a specific AKID we can link them to? And these links as
per security setting (S2) have to be made in the strongest
sense possible: i.e., when the Ua* channel is secure.

4.4. UE-Focused, SUPI-based Privacy in AKMA

Now, we shift attention from the ephemeral AKMA-
specific UE identifiers that are the AKIDs to the AKMA-
nonspecific, network-wide, long-term identifiers of UEs
used in step 8 of the protocol – SUPIs/GPSIs. This is
linked to our Note 3 in Section 2.2.

Via Note 3 in Section 2.2, we underline that in AKMA,
the SUPIs/GPSIs are sent in step 8 of the protocol from
the core to the intended, honest AFs on an authenticated
channel. So, unlike in the case of the AKIDs which could
be sent even on insecure channels, there is little point in us
looking at the “leakage-like” privacy of the SUPIs/GPSIs
(as we did for the AKIDs in Definition 3).

However, what Note 3 alludes to is that corrupt AFs
can go beyond what each honest AF knows on SUPIs/G-
PSI. That is, intuitively, several corrupt (or “honest but cu-
rious”) AFs can collude and find out which SUPIs/GPSIs
are served by each. And – since the SUPIs/GPSIs are long-
term – if this SUPI/GPSI–tracking were possible, then it
is worse than tracking AKIDs (which we formalised in
Definition 4). So, we generalise this notion of adversarial

tracking of SUPIs/GPSIs that goes beyond the honest
receipt of SUPIs/GPSIs in step 8 of AKMA.
Definition 5. Unlinkability of UE-SUPIs and AFs in

AKMA. In the threat model T , under the security
assumptions S, unlinkability of UE-SUPIs and AFs
(L SUPI-AF) holds if
• any attacker A in the settings of T ,S, spanning any

AKMA execution environment E, cannot detect if a
SUPI/GPSI of an honest UE can connect to parties
other than themselves.

Notes & Summary of Our Definitions. To sum-
marise, all notions we introduced thus far are recounted
in Table 1.

Our first four properties (Def. 1 – Def. 4) reason
differently about AKIDs, AFIDs, and their inter-relation,
also modulo the (in)security of the Ua* channel. Indeed,
our unlinkability notion in Def. 4 does not necessarily
follow from the previous two notions on privacy:

Definition 4 ⇏ Definition 3;

Definition 4 ⇏ Definition 2.

This is because of the following three aspects. Firstly,
an attack w.r.t. Definition 3 does not imply an attack
w.r.t. Definition 4. That is, an attacker may be able to
break post-compromise privacy of UE’s AKID on AKIDs,
by observing just something on the first message on the
𝑈𝑎∗ channel between the UE and the AF, but meanwhile
being unable to say/see anything of the AF ID sent on
the channel between the AF and the core. Second, an
attack w.r.t. Definition 2 does not imply an attack w.r.t.
Definition 4. That is, one can break weak privacy of
the AF by corrupting a UE in the enrolment phase and
getting an AF ID from the 𝐾𝐴𝐹 derivation function, but
not knowing which other AKIDs this AF/AF ID serves.
So, investigating all notions 1–4 is valid pursuit at this
stage, as we do not know whether they imply one another
in AKMA, or not10.

Definition 5 is incomparable to the first four def-
initions, as the first refer to AKIDs and the latter to
SUPIs/GPSIs, and the AKID and SUPIs/GPSIs are not
inferrable from one another.

5. Our Formal Analysis of Privacy in AKMA

5.1. Our Symbolic Models for AKMA’s Privacy

We took our generic threat model and properties
and under-approximated them into Dolev-Yao (DY) mod-

10. Perhaps, there is enough information in AKMA executions that
once, e.g., an AKID is trackable, it also follows which is the AF IDs
that this AKID connects to, or vice versa, or not all, or it may depend
on the security of the 𝑈𝑎∗ channels, or on the corruptions’ settings.



els [10], [19], [12], from the viewpoint of disproving them
(rather than proving them), in the case of AKMA.

We implemented this in various models, specifications
and we carried out the analysis in the Tamarin prover [19].

• All our Tamarin files are at [24].
• We do our Tamarin proofs in Tamarin 1.6.1 and in

Tamarin 1.8 (the latest). There is no difference in meaning
between our models/files in the two Tamarin versions.
We use Tamarin 1.6.1 for the diff-equivalence proofs,
purely since they perform badly11 in Tamarin 1.8. Our
repository [24] makes clear which files/proofs have been
run with which Tamarin version.

• Apart from disproving our privacy notion on various
models for AKMA (sometimes with restrictions in place
for tractability), we also prove agreement properties for
AKMA, in a separate and un-restricted model but consis-
tent with our privacy modelling.

Now, we discuss concretely our various (family of)
models for AKMA, resulted from varying all security as-
sumptions underpinning our privacy notions in Section 4.

DY Models Varying the Security of the 𝑈𝑎∗

Channels. Our privacy properties –in line with our threat
model in Section 3– vary the security assumptions: e.g.,
strong secrecy of UE’s AKID in Definition 1 requires
secure 𝑈𝑎∗ channels, whereas post-compromise privacy
of UE’s AKID in Definition 2 allows for the possibility
for the 𝑈𝑎∗ channels to be both secure and insecure (i.e.,
one way for AKIDs to leak is insecure 𝑈𝑎∗ channels).
Thus, we start by yielding two classes of models:

• MSec Insec-𝑈𝑎∗ – models where 𝑈𝑎∗ channels can be
both secure or insecure.

The above models are suited to modelling PP UE-
AKID (Def. 2), WP AF (Def. 3), unlinkability of UE-
AKIDs to AFs as well as unlinkability of AFs to
UE-AKIDs (Def. 4).

• MSec-𝑈𝑎∗ – models where 𝑈𝑎∗ channels can only be
secure.

The above models are suited to modelling SS UE-
AKID (Def. 1).

Main Characteristics of Models MSec Insec-𝑈𝑎∗ and
MSec-𝑈𝑎∗ . In these models, we have followed the follow-
ing settings:

• There are no restrictions on the number of AFs, cores
or UEs.

• Each UE is associated with one and only one core,
which is standard for mobile-networks’ subscribers.

• Each UE is assigned 2 AFs, at random, from all the
AFs “on-boarded” in the setup of the model (i.e.,
point 1 above). These AFs remain the same through-
out the protocol’s multiple execution: i.e., we do not
model full subscription or re-subscription by UEs to
AFs, as this is not part of the AKMA specifications.

11. This issue is known; see here https://github.com/tamarin-prover/
tamarin-prover/issues/615 that the developers are investigating but it
remains an issue even in Tamarin 1.10 .

• In the MSec-𝑈𝑎∗ models, the 𝑈𝑎∗ channels between
the UEs and its AFs are always secure.

• In the MSec Insec-𝑈𝑎∗ models, the 𝑈𝑎∗ channels be-
tween the UEs and its AFs are chosen to be secure
or insecure, non-deterministically, in the setup of
the UEs and AFs in the model. We ensure that in
each model there is at least an UE with an insecure
𝑈𝑎∗ channel and one with a secure channel; this
is to ensure we are satisfying the premises of our
definitions.

• The channel between AF and the core is always
secure.

• UEs can re-Register with the core (i.e., as such,
change of their AKID, and renew their 𝐾𝐴𝐾𝑀𝐴)
unboundedly many times, and all parties can re-run
the AKMA protocol, in line with specifications [6]
and Fig. 2.

DY Models Varying the Privacy Encoding. We
use two ways of encoding and disproving our privacy
properties in DY tools.

Firstly, we disprove some of our privacy proper-
ties in AKMA, by using diff-equivalences [21]. A diff-
equivalence is a strong reachability condition. Intuitively,
when proving diff-equivalence between processes 𝑃 |𝑄
and 𝑃′ |𝑄′, diff-equivalence requires that 𝑃 is equivalent
(observationally by an attacker but sometimes even w.r.t.
internal reductions) to 𝑃′ and 𝑄 is equivalent (in the same
sense) to 𝑄′. We put the diff-equivalence-based statements
in models that we refer to as Mdiff:

• Mdiff: — models where we use diff-equivalence
to (dis)prove privacy properties.

We use Mdiff models with unlinkability of UE-AKIDs
to AFs and unlinkability of AFs to UE-AKIDs in Def. 4.

Secondly, we exhibit some privacy failures in AKMA
via trace-based lemmas that explicitly show the attacker
tracking a UE, or an AF. We call the models where we
use for this: MnoDiff:

• MnoDiff — models where we use trace properties
not holding as witnesses disproving our privacy properties.

We use MnoDiff models with, e.g., PP UE-
AKID (Def. 2).

We use the MnoDiff models, separately from the
Mdiff models for two reasons: (a) due to inefficiency with
Tamarin 1.8 and diff-equivalences; (b) in the former, we
are able to show failures of our privacy properties on
AKMA in very clear, explicit ways, via attack traces that
are a formal witness to the causes of these attacks as well.

Main Characteristics of Models Mdiff and MnoDiff .
In these models, we have followed the following settings:

• Both these models can be of the MSec Insec-𝑈𝑎∗ type
or of the MSec-𝑈𝑎∗ type.

• The Mdiff models are simplified models of AKMA
in that they contain at most three UEs and two
AFs; these simplifications come from the fact that
we aim to prove specific diff -equivalences driven
by our notions unlinkability of UE-AKIDs to AFs
and unlinkability of AFs to UE-AKIDs, and this is
a safe abstraction to undertake: if the attacker can
distinguish protocol aspects in this simplified setting,
then the attacker can also distinguish these in richer

https://github.com/tamarin-prover/tamarin-prover/issues/615
https://github.com/tamarin-prover/tamarin-prover/issues/615


settings. To this end, the models focus on proving
diff -equivalence primarily based on AKIDs (driven
by the unlinkability of UE-AKIDs to AFs notion) or
proving diff -equivalence primarily based on AFIDs
(driven by the unlinkability of AFs to UE-AKIDs
notion); we call the former models Mdiff

𝐴𝐾𝐼𝐷
and the

latter models Mdiff
𝐴𝐹𝐼𝐷

.
To see at a glance the relationship between our classes

of models mentioned thus far, please refer to Figure 3.

ℳSec_Insec−Ua∗ ℳSec−Ua∗ℳdiff

ℳnoDiff

Figure 3: Our Classes of Privacy Models for AKMA (of
most interest are checkered areas: MnoDiff,Sec Insec-Ua*, Mdiff,Sec Insec-Ua*;
of interest for one property are dotted areas: MnoDiff,Sec-Ua*,
Mdiff,Sec-Ua*; dark area – not used)

The grey area on Figure 3 denotes diff -equivalence
properties as well as trace-based lemmas, present in the
same model, and both being used to disprove privacy. We
do not use models in this set. Actually, Table 1 shows
which class of model we actually use for which privacy
property. Thus, this table also shows that the models of
most interest are those in the checkered areas in Figure 3.
The models within the dotted areas are also of interest:
i.e., these are required by SS UE-AKID in Def. 1.

From here on, we express the intersection of the
classes of models (i.e., the checkered and the dotted areas
in Figure 3) in a natural way: e.g., MSec Insec-𝑈𝑎∗ ,diff

𝐴𝐾𝐼𝐷
is

a model in which we (dis)prove diff -equivalence based
on AKIDs, and the 𝑈𝑎∗ channels can be both secure and
insecure.

5.2. Our Verification of AKMA’s Privacy

We now explain how we modelled the various privacy
properties from Section 4.

We recount the results of our privacy analyses and
findings discussed below in Table 2.

5.2.1. Analysing Post-compromise Privacy of the UE.
In line with the secure-channels’ setting required by
PP UE-AKID, we encoded PP UE-AKID in a model in
the subclass MnoDiff,Sec InSec-𝑈𝑎∗ and in a model in the
MnoDiff,Sec-𝑈𝑎∗ . We wrote a “no-desynchronization (ND)”
lemma a la [17], [11]: it checks whether all honest UE
and honest AF are synchronised: i.e., whether an arbitrary
UEs with a given AKID and an arbitrary AF that this
AKID has contacted to have a synchronous view of their

runs of AKMA, over repeated executions. To be able
to show this, we modelled a crude version of sessions’
management across executions of the AKMA protocol
(i.e., an UE’s view to have contacted a given AF once,
twice, and keeping states in between); both for the UE
and the AF, we did this via counters12. At the high-level,
the ND lemma would hold of these counters are in sync
at the UE and at the AF’s end.

This ND lemma fails and this refutes our PP UE-
AKID.

The exact attack trace, in our MnoDiff,Sec InSec-𝑈𝑎∗

model, in Tamarin, is as follows: (1) An honest UE1 es-
tablished an AKMA session with an honest AF1, success-
fully; (2) UE1 then contacts AF2 with the same AKID, for
a session; (3) AF2 is corrupted and leaks the AKID; (3)
The DY attacker uses the AKID through a corrupt UE2
to contact AF1 again, thus de-syncing the counters in the
honest AF1 from those in the honest UE1. An immediate
consequence of this no-desynchronisation attack is that the
attacker learns of the state of UE1 on the network. That
is, in the 𝑈𝑎∗-connection opened via the corrupt UE2, the
attacker also receives information from AF1 on UE1. The
information leaked is whether the request for a new the
𝑈𝑎∗-connection has gone through, and if not – why not:
e.g., because another UE1 connection (to AF1) is live.

In Figure 4, we explain the attack-trace above via an
image, and –primarily via lower, left-hand-side rectangle–
we also summarise again why this entails that our PP UE-
AKID fails. As Figure 4 also depicts, note that this
PP UE-AKID fails both on MSec InSec-𝑈𝑎∗ models and on
MSec-𝑈𝑎∗ models (i.e., irrespective if the 𝑈𝑎∗ channel is
secure or not), as long as the attacker – as per our threat
model – can corrupt UEs and AFs.

In Appendix A, in Figure 7, we show the code of our
no-desynchronisation (ND) lemma.

5.2.2. Analysing Weak Privacy of the AF. In line
with the secure-channels’ setting required by WP AF,
we encoded WP AF in a model in the subclass
MnoDiff,Sec InSec-𝑈𝑎∗ and in a model in the MnoDiff,Sec-𝑈𝑎∗ .
And, to check property WP AF, we actually looked at a
“well-authentication (WA)” lemma a la [17], [11]. Our
WA lemma checks if every time the core evaluates posi-
tively the start of an AKMA session for a UE, this UE is
honest and has requested the session per se.

Our WA lemma fails for AKMA and this shows
WP AF failing.

The Tamarin attack-trace, on our MnoDiff,Sec InSec-𝑈𝑎∗

model, is as follows: (1) An honest UE1 tries to establish
an AKMA session with an honest AF1, but the attacker
blocks this getting the UE1’s AKID; (2) The attacker uses
the AKID through a corrupt UE2 to contact AF1 again,
thus making the core allow an AKMA-session for UE1
but via the corrupt UE2. This means that the attacker
gets information about AF1 illicitly (e.g., which UEs they
serve, when); this refutes our weak privacy of the AF.

12. To make things more tractable, in the models submitted for review,
the counters in the AF go up to a maximum of 3 requests for each UE.



Table 2: Our Systematic Privacy Verification of AKMA in Tamarin (Tamarin files at [24])

- Property About Model Class Verification Method Status Filename for Model(s) Time

1 strong secrecy of UE’s AKID
(Def. 1) AKID Mdiff,Sec-Ua* diff-equiv on two unknown AKIDs holds diff/SS AKMA Sec cca. 2min

2 post-compromise privacy of UE’s AKID
(Def. 2) AKID MnoDiff,Sec( Insec)-Ua* trace-based desychronisation/tracking ND UE AF fails indist/PP AKMA manual (with oracle

cca. 10 mins)

3 weak privacy of the AF
(Def. 3) AF ID MnoDiff,Sec( Insec)-Ua* trace-based desychronisation/tracking ND UE CORE fails

WA fails indist/WP AKMA cca. 60 mins

4 unlinkability of UE-AKIDs to AFs
(Def. 4) AKID, AFID MnoDiff,Sec( Insec)-Ua* trace-based desychronisation/tracking ND UE AF fails

(¬ Def. 2 ⇒ ¬ Def. 4) indist/PP AKMA manual (with oracle
cca. 10 mins)

5 unlinkability of UE-AKIDs to AFs
(Def. 4) AKID & AF ID MSec Insec-Ua* – diff-equiv between AKID1 speaking to AFID 𝑖

and AKID2 speaking to AFID 𝑖
fails diff/Unlink1 AKMA cca. 3 mins

6 unlinkability of AFs to UE-AKIDs
(Def. 4)

AKID
AF ID MSec Insec-Ua*

–6.1. diff-equiv over AKID-AFID1 on Ua* secure,
when no known AKID, one known AFID1 holds diff/ Unlink2(oneUE) AKMA cca. 3 mins

–6.2. diff-equiv over AKID-AFID1 on Ua* secure,
when no known AKID, one known AFID1 fails diff/Unlink2(twoUEs) AKMA cca. 3 mins

7 unlinkability of UE-SUPIs and AFs
(Def. 5)

SUPI/GPSI
AF ID any/not about Ua* diff-equiv,

i.e., A cannot associate SUPI/GPSI 𝑖 to AF ID 𝑗
fails diff/Unlink AKMA GPSI cca. 2 mins
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!	also learns of #$%&!’s 
state on the network, via 
the 9th msg. of AKMA; 
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Figure 4: PP UE-AKID Failing (via a desynchronisation
attack between UEs and AFs)

In Figure 5, we explain the attack-trace above, and
–primarily via lower, left-hand-side rectangle– we also
summarise again why this entails that our WP AF fails.
As Figure 5 depicts, note that WP AF fails both on
MSec InSec-𝑈𝑎∗ models and on MSec-𝑈𝑎∗ models (i.e., irre-
spective if the𝑈𝑎∗ channel is secure or not), if the attacker
– as per our threat model – can corrupt UEs and AFs.

In Appendix A, in Figure 8, we show the code of our
UE-to-core well-authentication lemma.

We note that property WP AF can also be shown
to fail as via an no-desynchronisation (ND)-style lemma
failing between the core and UE1 above; we have done
this too, modelling session-booking via counters as in the
case of the model dis-proving PP UE-AKID, only that this
time the counters used and quantified over are, of course,
inside the core13 and UEs. Using Figure 5, we can see that
𝑠𝑡𝑎𝑡𝑒𝑐 of honest UE1 and 𝑠𝑡𝑎𝑡𝑒𝑑 of the (honest) core are
also de-synchronised.

13. To make things more tractable, in the models submitted for review,
the counters in the core go up to a maximum of 3 requests for each UE.
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Figure 5: WP AF Failing via a MiM attack between UEs
and core, “visible” as trace

Our the code of our ND lemma for this is given in
Appendix A, in Figure 9.

5.2.3. Analysing Strong Secrecy of the UE. In line with
the secure-channels’ setting required by SS UE-AKID,
we encoded SS UE-AKID in a model in the subclass
Mdiff,Sec-𝑈𝑎∗ . And, to check property SS UE-AKID, we
actually looked at analysing a diff-equivalence quantifying
over two AKIDs (the same or different, belonging the
same UE or not).

In fact, in the case of strong secrecy of UE’s AKID,
as per Def. 1, we need that the attacker necessarily does
not learn the AKIDs. Since we operate in a DY setting,
we therefore need the 𝑈𝑎∗ to be secure, hence building
a model in MSec-𝑈𝑎∗ . In this case, for simplicity and
clarity of the diff proof, we restrict14 the model to 2 UE
and 2 AFs. W.r.t. the AKIDs to distinguish, we take the
following approach. We use three types of AKIDs:
(a) for UE1, we single out AKID1 is for AF1 (and
AF2), which becomes AKID2 after the re-Registration;
(b) for UE2, we single out AKID3 for AF1 (and AF2).
Then, we prove diff-equivalence of AKID1 to all the
other AKIDs, in fact w.r.t. also to other AKID-indexed
information, i.e., long-terms keys, 𝐾𝐴𝐹s, 𝐾𝐴𝐾𝑀𝐴s, etc.:
e.g.,

14. Note that if the attacker distinguishes AKIDs in this case, it will
also distinguish them in the ampler models, without restrictions on the
numbers of parties.



diff(<A_KID3, K_AF3, K_AKMA3, ˜K_sh3, ˜K_sh3>,
<A_KID2,K_AF2, K_AKMA2,˜K_sh2, ˜K_sh4>).

This diff is clearly a faithful representation of
Def. 1: that is, “ for the active AKID of an honest UE”
(i.e., AKID1) , “the attacker A cannot follow (future)
presences of this AKID within secure 𝑈𝑎∗-connections”
(i.e., AKID2), compared to other presences in the AKMA
executions (i.e., AKID3).

The strong secrecy of UE’s AKID property holds in
AKMA.

5.2.4. Analysing Unlinkability Users and AFs. As per
Def. 4, there are two types of unlinkability: one from the
direction of linking “known” UEs to AFs (i.e., unlinkabil-
ity of UE-AKIDs to AFs), and one from the direction of
linking “known” AFs to UEs (i.e., unlinkability of AFs to
UE-AKIDs). We discern between the analysis of the two
in the below.

5.2.4.1 Analysing unlinkability of UE-AKIDs
to AFs.. Looking at the way post-compromise privacy
of UE’s AKID fails (see Section 5.2.1 and/or Figure 4),
it should become clear that, in the case of the AKMA
protocol, the failure of post-compromise privacy of UE’s
AKID also leads to a failure of unlinkability of UE-AKIDs
to AFs a.k.a. ∃𝑈𝐸 − 𝐴𝐾𝐼𝐷 → ∀ 𝐴𝐹 (Def. 4).

I.e., in AKMA: ¬ Def. 2 ⇒ ¬ Def. 4
That is, the attacker in the run in Figure 4 not only tracks
an AKID, but via the details in msg. 1 and msg. 9 of the
AKMA protocol, it links this AKID (i.e., AKID1) to an
AF (i.e., AF1). In Tamarin, we can easily quantify over an
extra variable (i.e., the AF) in the lemma (i.e., ND) that
shows post-compromise privacy of UE’s AKID failing,
and thus show ∃𝑈𝐸 − 𝐴𝐾𝐼𝐷 → ∀ 𝐴𝐹 failing. This is
why in Table 2 where we summarise our results, row 2
and row 4 report the same models/results.

However, for completeness, we do the above not only
in MnoDiff models (row 4 in Table 2), but also in Mdiff

models. This is reported in row 5 of Table 2.
To understand our diff -based modelling, note that diff

distinguishing power comes from the observation pre-
sented in our Note 4, in Section 2. I.e., in step 9 of
the AKMA protocol, the status of a AKID-AF session
(e.g., ongoing, successful establishment, failure for reason
1, reason 2, ..., ) is leaked. Intuitively, using this, an
attacker can distinguish the “status” of AKID1 vs that
of AKID2. We detail below how this can be encoded via
diff -equivalences, leveraging details on step 9 of AKMA.

For instance, consider the following setting not en-
tirely known to the attacker: (i) UE1/AKID1 is communi-
cating to AF1 using a secure 𝑈𝑎∗ connection, and to AF2
using an insecure 𝑈𝑎∗; (ii) UE2/AKID2 can communicate
to AF1 and AF2, but is for now communicating just with
AF2 (not to AF1); it uses an insecure 𝑈𝑎∗ connection.

Due to the insecure channels towards AF2, clearly
what the attacker knows if the above setting is AKID1
and AKID2, and their connection to AF2.

To mount a distinguishing attack against AF1 (i.e., to
discern if one is connecting to AF1), the attacker will
use step 1 on AKMA and send AKID1 and AKID2 to
AF1 (on whichever type of 𝑈𝑎∗ connection). As per Note
4 in Section 2, in step 9 of AKMA, AF1 will send the
attacker an error-response saying that AKID1 is already

connected, and a success-response saying that AKID2 can
connect. We show this attack via a diff -equivalence failing
in Tamarin.

5.2.4.2 Analysing unlinkability of AFs to UE-
AKIDs w.r.t. AKIDs.. The privacy attacks shown thus
far (e.g., weak privacy of the AF) do not imply an attack
on unlinkability of AFs to UE-AKIDs; this is because
the attacks before stem from knowing/learning an AKID,
whereas unlinkability of AFs to UE-AKIDs is about start-
ing from knowing an AFID and linking it to (potentially
as-of-then unknown) AKIDs.

We do this in a Mdiff,Sec InSec-𝑈𝑎∗ model. The results
are shown in row 6 of Table 2.

To analyse unlinkability of AFs to UE-AKIDs, as per
its definition, we leak to the attacker one AFID, say AF1.
Consider that some UE1 connects to AF1, over secure
channels, and to some AF2, unknown to the attacker, over
insecure channels. Then, we check a diff similar to the
one described for row 5, above.

Interestingly, it turns out that the diff above holds if
there is only one UE (e.g., UE1 as named above) present,
but it fails if there are at least two UEs present (e.g., UE1
as named above, and a different UE2). This is because one
UE will show up with the same AKID, and that AKID
is global (see Note 1 in Section 2), i.e., the same for all
AFs.

5.2.5. Analysing Weak Privacy of UE’s SUPI and
Unlinkability of UE-SUPIs and AFs. We also formalise
and analyse Definition 5 (unlinkability of UE-SUPIs and
AFs); see row 7 on Table 2. Since the SUPI/GPSI is a
fixed, unique identifier for a UE, colluding AFs15 can
know which SUPI/GPSIs connect to their entire clique.
So, Definition 5 clearly fails in AKMA.

We recall from Note 3 that the SUPI/GPSI are unique,
long-term identifiers sent to the AFs in step 8 of AKMA.
To enhance our security results, we consider primarily AFs
outside the network, so we consider the GPSI is sent, but
this is purely a name w.r.t. the modelling that follows.

We create a model in the class Mdiff: i.e., we use diff s
for verification.

The model allows for two UEs/GPSIs 𝑎 and 𝑏 and
two AFs 𝑖 and 𝑗 , and we encode that the first UE/GPSI
𝑎 will contact one of the AF 𝑖.

To show that Definition 5 holds/fails, the model then
tries to distinguish (via a diff using GPSIs sent on step 8
of the protocol) between:
– (case1) the first UE 𝑎 contacts the second AF 𝑗 ;
– (case2) the second UE 𝑏 contacts the second AF 𝑗 .

This diff fails provided that the AFs are corrupt
and leaks the GPSI they receive, at some point. Then,
concretely, in case1 the attacker will observe the same
GPSI, while in the case2 – the attacker will see two
different GPSIs. Thus, case1 and case2 (i.e., which GPSIs
contact which AFs) are distinguished via the diff above.
This shows that Definition 5 fails in AKMA.

5.2.6. Our Verification of AKMA Beyond Privacy.
All our models are also checked w.r.t. standard security
requirements, such as Lowe’s hierarchy [18], and the re-
sults are as expected: e.g., weak agreement holds between

15. Collusion of AFs is a possibility, not a requirement in our threat
model and definitions.



parties two-by-two, except for between the UE and the
AF when the two communicate on an insecure channel;
most secrecy and key-agreement properties hold (e.g., on
AKID, and 𝐾𝐴𝐹 , respectively), except for when, again, the
UE and the AF communicate on an insecure channel. Such
findings are recounted inside our models as comments.

5.3. On Our Tamarin Modelling

In this work, we developed new models in Tamarin,
taking the existing ones in [25] as a starting point. In Sec-
tion 7.1, Section 7.2 and in Table 4, we discuss at length
why we needed to develop these models almost anew:
i.e., other models in [7] were in ProVerif, the ones and all
models, included the ones in [25], have a weaker threat
model, with simpler assumptions on the 𝑈𝑎∗ channels;
this also makes each of these older model simpler and
therefore more tractable. To deal with our specific privacy
properties, not only did we need to strengthen the threat
model, but we also needed to consider multiple classes
of models based on this 𝑈𝑎∗-security dichotomy (e.g.,
MSec Insec-𝑈𝑎∗ , MSec-𝑈𝑎∗). Finally, even our simplest
class of models cannot just reuse the models from [25],
since those were for authentication, and our privacy/un-
linkability properties require not only new tagging and
proving around diffs, but also new trace-based lemmas,
with different predicates and different rules all over the
model, compared to [25]. To this end, as we mentioned in
Section 5.2.1, our privacy/unlinkability attacks on AKMA
are sometimes found via diffs, and other times via
failure of trace properties that we carefully encode into
specific lemmas encoding lack of well-authentication or
non-desynchronisation16; so, we also make a link between
our formal definitions in Section 3, weak unlinkability by
Arapinis [9] and its verification via WA, ND by [17], [11]
in our Tamarin models for AKMA, which was also not
done before.

Finally, our AKMA𝑝 protocol for privacy-enhanced
AKMA is new, with nothing similar proposed before, and
so our model for AKMA𝑝(see Section 6) is totally new.

6. AKMA𝑝: Practical & Private AKMA

We now give a practical solution to the privacy attacks
we exhibited in the previous section.

6.1. Privacy Failures and Patches Put Simply

Vehicles to Our Privacy Attacks in AKMA. The
main reasons to our privacy attacks are:
(a) the attack against WP AF (Figure 5) has its onset

via an adversarial injection of the global AKID of
an UE to an AF1, when this AKID was aimed for an
AF2; this global nature of the AKID is also at fault
for unlinkability of UE-AKIDs to AFs failing;

16. The authors in [17], [11] soundly reduced the verification of weak
unlinkability by Arapinis et al. [9] to the verification of two reachability
properties called well authentication (WA) and no desynchronisation
(ND), and one property (which is not a trace-property) called frame
opacity (FO). Simply put, ND denotes that an honest interaction between
A and B cannot/should not fail. And, WA encodes that whenever a
conditional is positively evaluated, the agents involved are having so
far an honest interaction.

(b) the final parts of the attacks against WP AF (Fig-
ure 5) and PP UE-AKID (Figure 4) are stemming
from the fact that the success or the reason of failure
in the 9th message of AKMA is sent, on the 𝑈𝑎∗
channel, to any UE (adversarial or honest) without
any checks w.r.t. who this success/failure details are
intended for; i.e., the attacker manipulating an UE2
learns of the AKIDs or the AFs via information
meant for UE1 but sent to this UE2, on the 𝑈𝑎∗

channel;
(c) the main vehicle by which attacker can learn AKIDs

and thus have one way to start mounting most attacks,
e.g., PP UE-AKID (Figure 4), unlinkability of UE-
AKIDs to AFs, etc., is in the case where the 𝑈𝑎∗
channels/protocols are insecure;

(d) the attack against unlinkability of UE-SUPIs to AFs
is to the fact that an attacker may query if a given
SUPI/GPSI is connected to a given AF or another.

AKMA𝑝: Patching Our Privacy Attacks. Below
and in Figure 6, we give a small adaptation of AKMA
called AKMA𝑝 . As the Figure 6 shows, AKMA𝑝 inflicts
minute changes to AKMA:
– changes one KDF to yield unique AKIDs;
– adds one hash, when a SUPI connects for the first time
and for the first time only, to an AF;
– makes error-handling clearer.

We describe AKMA𝑝 below. It patches all above
privacy failings found in AKMA, as follows:

(i) to counteract problem (a) above, we ask that for each
UE, during each of its Registrations, an AKID unique
per every AFID is (re)generated.
For this, equation (1) in AKMA (see Section 2.2.2)
is modified to the equation below, as follows:

𝐴-𝑇 𝐼𝐷 = 𝐾𝐷𝐹 (𝑐𝑜𝑛𝑠𝑡, 𝐾𝐴𝑈𝑆𝐹 , “𝐴𝑇𝐼𝐷”,AF ID, SUPI)

See the blue box on the left hand side of Figure 6.
All the other equations (i.e., derivations of identifiers
and keys in AKMA) stay the same.

(ii) to counteract problem (b) above, the success or fail-
ures in AKMA’s AF-key derivation which are sent
from AF to the UE on the Ua* channel, should
be sent not in plain text but encrypted with a key
pertaining just to the UE for whom these messages
are intended.

To this end, the core will issue UE-specific messages
after step 7 of the AKMA protocol. This is because
it is only the core (and not the AF), who –at the
stage before step 9 of the AKMA protocol– has UE-
specific keys. Moreover, in our trust model (namely,
(T2) and (T4)), it is only the core who is trusted
and therefore can construct such a message in ways
unattainable to the attacker.

Concretely, if the 𝐾𝐴𝐹 generation succeeds or fails,
the core encrypts this result with the 𝐾𝐴𝑀𝐹 key17

17. This is the lowest-level key in the mobile-network key hierarchy
which is derived out of 𝐾𝐴𝑈𝑆𝐹 , and re-generated at each UE re-
Registration.
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Figure 6: AKMA𝑝: Our Modifications to AKMA (shown in blue on Figures 6.1-1 and 6.2-1 in [6])

it shares18 with the UE for which this core tried to
calculate the 𝐾𝐴𝐹 key. This encryption is forwarded
by the AF to the UE, in step 9, on the 𝑈𝑎∗-channel
they share.

For a diagrammatic version of this modification, the
reader can also see the blue-text boxes linked to step
7 and step 9 in Figure 6.

(iii) to counteract problem (c) above, all 𝑈𝑎∗ channel-
s/protocols should be secure;

(iv) to counteract problem (d) above, the core will no
longer send the one SUPI/GPSI to the AFs that a
UE connects to. Instead, the core will generate one
“pseudo SUPI/GPSI” per AF, for each UE that ever
connects to this AF. We call this 𝐴𝐹 𝐺𝑃𝑆𝐼. We show
its generation on the blue-text box linked to step 5
in Figure 6.
This 𝐴𝐹 𝐺𝑃𝑆𝐼 will be generated just once, when
the UE that it is linked to connect to a given AF for
the first time.

AKMA𝑝 & Our Privacy-attacks’ Counteractions.
These counteractions are as follows:

• Secure 𝑈𝑎∗ channels prevent AKID leaks, stopping
the onset of attacks.
• Encrypted handling of successes/errors w.r.t. 𝐾𝐴𝐹 deriva-
tions stop malicious UEs from learning other UEs’ data.
• One AKID per AFID stops the tracking of AFIDs and/or
the linking of AFIDs to AKIDs.
• One pseudo-SUPI replacing each SUPI connecting to an
AFID stops the linking of SUPIs to AFIDs.

18. An encryption (by the core or the AF) of success/failure with
𝐾𝐴𝐹 itself is not suited; it may be (e.g., in the case of failure in steps
6-8) that the right 𝐾𝐴𝐹 has not been computed, and then there will no
way for the UE to decrypt the reason of failure.

Judicious error-handling is common practice when it
comes to privacy preservation. One AKID per AF is also
meaningful: if Twitter/X and Facebook/Meta both offered
AKMA to UEs, it would not be desirable that these UEs
would share the same AKID to connect over-the-air to
both services.

6.2. Verifying AKMA𝑝’s Privacy in Tamarin

We showed formally that our AKMA𝑝 enjoys privacy
guarantees w.r.t. our notions. We recount now.

Since the AKMA𝑝 has only secure 𝑈𝑎∗ channels, then
in our Tamarin modelling we will only have MSec-𝑈𝑎∗

models and no MSec Insec-𝑈𝑎∗ .
Since we wished to prove (not disprove) privacy for

AKMA𝑝 , we only used Mdiff models, aiming that all diff-
equivalences would hold (which they did).

That said, that are other clear modelling changes from
the AKMA-based models, as now there is one AKID
per AFID. For instance– in the Mdiff models– where we
restricted for AKMA to 3 AKIDs (for tractability reasons),
now we will need to consider at least 4 AKIDs to be
able to formulate the right diffs (e.g., for checking
unlinkability of UE-AKIDs to AFs) . We applied such
changes to our Tamarin models for AKMA, and easily
produced Tamarin models for AKMA𝑝 .

Note that, especially in AKMA𝑝’s settings of secure
communications only, it is the case that some privacy
holding trivially implies other privacy-notions holding.

Concretely, if strong secrecy of UE’s AKID holds
(“diff-equiv” on all UE-related data holds for any two
unknown AKIDs) and unlinkability of AFs to UE-AKIDs
holds (“diff-equiv” on all UE-AF-related data holds even
when one knows one AFID) and unlinkability of UE-
AKIDs to AFs holds (“diff-equiv” on all UE-AF-related
data holds even when one knows one AKID), then also



Table 3: Our Systematic Privacy Verification of AKMA𝑝 in Tamarin (files found at [24])

Property About Model Class Verification Method Status Ref. Model(s) Time
strong secrecy of UE’s AKID
(Def. 1) AKID Mdiff,Sec-Ua* diff-equiv on two unknown AKIDs holds diff/SS AKMAP cca. 1 min

unlinkability of UE-AKIDs to AFs
(Def. 4) AKID and AF ID MSec-Ua* no known AFID, one known AKID1,

diff-equiv over AKID1-AFID holds indist/Unlink1 AKMAP cca. 1 min

unlinkability of AFs to UE-AKIDs
(Def. 4) AKID and AF ID MSec-Ua* no known AKID, one known AFID1,

diff-equiv over AKID-AFID1 holds indist/Unlink2 AKMAP 1 min

post-compromise privacy of UE’s AKID
(Def. 2) AKID Mdiff,Sec-Ua* diff-equiv “between a known AKID

and an unknown one” holds from the first 3 rows 1 min

weak privacy of the AF
(Def. 3) AF ID Mdiff,Sec-Ua* diff-equiv “between a known AFID

and an unknown one” holds from the first 3 rows 1 min

unlinkability of UE-SUPIs and AFs
(Def. 5)

SUPI/GPSI
AF ID any/not about Ua* diff-equiv “between 2 AKIDs contacting an AF

given one known AF GPSI” holds diff/Unlink AKMAP GPSI 23 min

post-compromise privacy of UE’s AKID must hold (“diff-
equiv” on all UE-related data holds even when one knows
one AKID) and weak privacy of the AF(“diff-equiv” on all
UE-related data holds even when one knows one AFID)
must hold. This is the case in AKMA𝑝 .

Also, clearly weak privacy of UE’s SUPI holds since
there are no more SUPIs sent in AKMA𝑝 .

Similarly, because of the nonce used in the generation
of our AF GPSIs, then unlinkability of UE-SUPIs to AFs
also holds in AKMA𝑝 . That is, an attacker, who is in
control of a group of AFs, will only learn that a specific
UE has contacted a given AF (after all the UE’s 𝐴𝐹 𝐺𝑃𝑆𝐼

is a long-term identifier) but will not be able to associate
this with the same UE connecting to any other AFs (since
the UE’s 𝐴𝐹 𝐺𝑃𝑆𝐼s are unique for each UE/AF pair).

For good measure, in AKMA𝑝 , we also verified all
the properties we had verified for AKMA (e.g., all the
via WA, ND lemmas), and they all hold for AKMA𝑝 . For
further details, please see our files.

Our verification results for AKMA𝑝 are also sum-
marised in Table 3.

Responsible Disclosure. We discussed with 3GPP
privacy enhancements of AKMA, ours and other possibil-
ities alongside. One aspect that 3GPP does not agree with
in AKMA𝑝 is to drop the use of SUPIs/GPSIs, in the 8th
step of AKMA, as these have been added in later revision
for the practical purposes of easy billing; however, we
discussed the wider impact of using SUPIs/GPSIs there,
and will continue to lobby for their removal. 3GPP would
prefer to keep the AKIDs global, but understands the
threat and we are actively looking into new ways of
calculating the AKID as per AKMA𝑝 . 3GPP would prefer
to keep the 𝑈𝑎∗ both secure and insecure to serve older
applications based on, e.g., HTTP, however it understands
the risk and a recommendation/note will likely be added in
future revisions about using only/preferably 𝑈𝑎∗. Finally,
3GPP agrees that the error/success codes have to be
obfuscated in the last step of AKMA, as suggested by
AKMA𝑝 . Further, there is not much leeway for privacy-
enhanced designs in AKMA different to these in AKMA𝑝 ,
as far as 3GPP is concerned.

7. Related Work

7.1. Comparison with Privacy Analyses of
AKMA

In the introduction, in paragraph “Modified Versions
of AKMA”, we discussed how recent privacy-enhanced

versions [7] of AKMA suffer from certain shortfalls in
our perspective centred on backwards compatibility. We
detail here, compare and contrast further with our work,
for various perspectives.
Aims. In this work, our aim is to give formal definitions of
privacy in AKMA, from the perspective of all identifiers
concerned, as well as their interplay (i.e., UE-AF unlink-
ability). Meanwhile, [7] does not aim to systematically
define what privacy for AKMA means, instead it aims to
hide the AKID and the SUPI from various parties; but, for
instance, it is even unclear if such confidentiality leads to
unlinkability. In fact, we show that unlinkability is linked
to other aspects too, such as the error management in the
last message of AKMA.
7.1.1 Designs. As we discussed in the introduction, our
AKMA𝑝 is constructed with backwards compatibility in
mind, whilst the private AKMA presented in [7] is at
odds with AKMA and 5G’s infrastructure and design
constraints. Without repeating the discussions in the intro-
duction, let us give some other examples of this. Firstly,
[7] changes the functionality of the AKID, which is a core
identifier in AKMA. Instead of the AKID being directly
consumed by the AF (which is key in AKMA, as Section
4.4.2 in its specification [6] explains), [7] makes the AKID
only decryptable by the core. Worse, this also changes
the flow of the AKMA protocol, as its step 1 needs new
Core-to-AF exchanges. Secondly, [7] makes changes to
the derivation of the 𝐾𝐴𝐹 key in such a way that the
entire 3GPP-specified 5G key-hierarchy would have to
change, which is virtually impossible. In our work, we
avoid such essential changes to the AKMA protocol or
the infrastructure, as we explained in Section 5.
7.1.2 Assumptions & Adversary Model. In our privacy
analysis of AKMA, we follow the infrastructure assump-
tions in the 3GPP specification [6] and allow the 𝑈𝑎∗
channels, between the UE and the AF, be both secure and
insecure, whilst [7] assumes that they are only insecure.
This means that our attacker model is stronger, and –in
turn– that it shows that if a UE has a secure channel to an
AF, this does not prevent it from being tracked and linked
to that AF.
7.1.3 Formal Models & Verification. The formal verifica-
tion by [7] and our here are orthogonal. First, the analysis
in [7] was done in using ProVerif and ours is done in
Tamarin. Second, as we say above, the models are under
different assumptions on the attacker, infrastructure, but
also w.r.t. different properties: e.g., we do UE-AF unlink-
ability, and tracking of the UE in AKMA’s setting of co-
existence of secure and insecure 𝑈𝑎∗ channels, whereas
[7] do strong confidentiality of AKID w.r.t. the AF. Third,



Table 4: Formal Analyses of AKMA and Variants

Work Domain Assumptions Patches’ Designs Tool Used Reusability here
[25] security/key-agreement insecure 𝑈𝑎∗ channels not relevant Tamarin yes, partial (see above)
[8] security/key-agreement insecure 𝑈𝑎∗ channels not relevant Tamarin no
[7] strong confidentiality of AKID & SUPIs insecure 𝑈𝑎∗ channels not backwards compatible ProVerif no
us privacy of AKID, unlinkability of AKID-AFID secure &insecure 𝑈𝑎∗ channels Tamarin backwards compatible not applicable

as we explained in Section 5, in our Tamarin models,
we formulate some of our unlinkability properties (which
do not exist in [7]), in well-known encodings of well-
authentication (WA) and no-desynchronisation (ND) by
[17], [11].

7.2. Comparison with Other Formal Analyses of
AKMA

The verification of security properties of AKMA, not
privacy-related, has also been carried out, using Dolev-
Yao symbolic protocol analysers: ProVerif – by [8], and
Tamarin – by [25]. Our Tamarin models are in fact in-
spired by those in [25], which –as we said– focused on
key-agreement. As Section 5.3 showed, we modified them
substantially to support privacy verification and fit our
threat model and settings: i.e., (i) developed on the deriva-
tion of the AKID; (ii) added secure channels for 𝑈𝑎∗; (iii)
added error management on the 𝑈𝑎∗ channel; (iv) added
new lemmas for privacy and unlinkability in the way of
well-authentication (WA) and no-desynchronisation (ND)
by [17], [11] as well as with diffs. Just (ii) and (iii)
imply much more complex models, which in turn imply
much more complex proofs and the need for new and
ingenious Tamarin oracle.

Take-away Message. In the Table 4, we summarise
the comparisons above in Section 7.2. and 7.3, between
us and other formal analyses of AKMA and patches of it.

7.3. Formal Privacy Definitions in General

W.r.t. definitions of privacy in general, Pfitzmann
and Hansen offer a consolidated report of privacy-related
terminology in [20]. Their report combines a number
of concepts of anonymity, unlinkability, undetectability,
unobservability, pseudonymity, and identity management.
Tsukada et al. investigate and organise some of these con-
cepts in [23], particularly relating the concept of unlinka-
bility to that of minimal anonymity. Goriac [16] expands
on the work by Pfitzmann and Hansen by adding defini-
tions for involvement and unobservability, and investigates
privacy in terms of behavioural equivalence. A recent
work is [13], which looks at the notion of “trackability”
from various perspectives, all rooted in some practical
modification. Their notion of existential trackability is
closest to what is commonly known as unlinkability, and
–in fact– our own notions of unlinkability are inspired by
their work.

8. Conclusions

We generically defined numerous facets of privacy
in the recent 5G procedure of delegated authentication
called AKMA. We found privacy breaches in AKMA.

Our patches minimally changie the 3GPP specifications
for AKMA, and attain our privacy guarantees.

We are in ongoing talks with 3GPP about this.
Whilst our findings are supported by formal methods

(i.e., state-of-art privacy analysis, in the Tamarin prover),
there is generic value in the privacy definitions we put
forward, and their failing on AKMA and their patches can
be easily understood by non-formal-methods specialists.
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Appendix A.
Tamarin Code

lemma No_Desynchronisation_UE_AF [
use_induction]:

"All AKID idAF idHN KAF SUPI count1 #
t01 #t02 #t03 #t04

.
(

AF_WA_ND(AKID, idAF, ’
ok’, ’1’+’1’) @ #
t04 //the AF was
contacted twice by
the AKID

&
HN_Response(idHN, idAF,

AKID, KAF,’ok’) @
#t03

&
AF_send_KeyRequest(idAF

,idHN, AKID) @ #t02
&
UE_WA_ND(SUPI, AKID,

idAF, ’secure’,
count1) @ #t01 //
the channel between
UE and AF is
secure

& #t01 < #t02
& #t02 < #t03
& #t03 < #t04
& // no key reveal
not (
Ex X m #r.
Reveal(X, m) @ #r
&
Honest(X) @ #t04 // the

AF has all the
parties that should
be honest and not
leak.

)
)
==>
(

count1=’1’+’1’ // the
UE must have sent
its AKID at least
twice to the AF as
well - which is
clearly impossible
- so this should
fail

)
"

Figure 7: Tamarin lemma — No Desynchronisation be-
tween the UEs and the AFs in AKMA

http://eprint.iacr.org/2004/332
https://github.com/UoS-SCCS/AKMA-Models-Tamarin
https://github.com/UoS-SCCS/AKMA-Models-Tamarin


lemma Well_Authentication:
"All AKID idAF #t04

.
(

//AF_WA_ND(AKID, idAF,
’ok’, ’1’) @ #t04

AF_WA_ND(AKID, idAF, ’
ok’) @ #t04

)
==>
(

Ex idHN KAF SUPI UaType
#t01 #t02 #t03

.
HN_Response(

idHN, idAF,
AKID, KAF,
’ok’) @ #
t03

&
AF_send_KeyRequest

(idAF,idHN,
AKID) @ #
t02

&
UE_WA_ND(SUPI,

AKID, idAF,
UaType,
’1’) @ #t01

& #t01 < #t02
& #t02 < #t03
& #t03 < #t04

)
| //key reveal
(

Ex X m #r.
Reveal(X, m) @ #r
&
Honest(X) @ #t04 // the

AF has all the
parties that should
be honest and not
leak.

)
"

Figure 8: Tamarin lemma — Well-Authentication between
the core and the UEs in AKMA

lemma No_Desynchronisation_UE_Core:
"All AKID idAF idHN SUPI count1 #t01 #

t02 #t03
.
(

Core_WA_ND(AKID, idAF,
’ok’, ’0’+’1’) @ #
t03 //the core was
contacted for this
AKID by the AF
twice

&
AF_send_KeyRequest(idAF

, idHN, AKID) @ #
t02

&
UE_WA_ND(SUPI, AKID,

idAF, ’insecure’,
count1) @ #t01 //
the channel between
UE and AF is
insecure and the UE
only sent count1
requests

& #t01 < #t02
& #t02 < #t03
& // no key reveal
not (
Ex X m #r.
Reveal(X, m) @ #r
&
Honest(X) @ #t03 // the

core has all the
parties that should
be honest here

)
)
==>
(

count1=’0’+’1’ //This
is clearly
impossible as the
UE only ever sends
1 request

)
"

Figure 9: Tamarin lemma — No Desynchronisation be-
tween the UEs and the core in AKMA


	Introduction
	Background
	A Glance on (5G) Mobile Networks
	AKMA & Its Privacy-Relevant Aspects
	AKMA – An Overview
	The AKMA Protocol


	Execution & Threat Models
	Privacy Notions for AKMA
	UE-focused, AKID-based Privacy in AKMA 
	What privacy notions

	Privacy of AKMA's Application-Functions
	Unlinkability of UE-AKIDs and AFs
	UE-Focused, SUPI-based Privacy in AKMA

	Our Formal Analysis of Privacy in AKMA
	Our Symbolic Models for AKMA's Privacy
	 Our Verification of AKMA's Privacy
	Analysing Post-compromise Privacy of the UE
	Analysing Weak Privacy of the AF
	Analysing Strong Secrecy of the UE
	Analysing Unlinkability Users and AFs
	Analysing Weak Privacy of UE's SUPI and Unlinkability of UE-SUPIs and AFs
	 Our Verification of AKMA Beyond Privacy

	On Our Tamarin Modelling

	AKMAp: Practical & Private AKMA
	Privacy Failures and Patches Put Simply
	Verifying AKMAp's Privacy in Tamarin

	Related Work
	Comparison with Privacy Analyses of AKMA
	Comparison with Other Formal Analyses of AKMA
	Formal Privacy Definitions in General

	Conclusions
	References
	Appendix A: Tamarin Code

